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Problem Statement

We have discussed methods to sample from

π (θ) =
γ (θ)

Z

where γ (θ) is known pointwise whereas

Z =
Z

γ (θ) dθ

is unknown.

In many problems, we need to compute Z ; e.g.

π (θ) =
p (θ, y)
p (y)

.
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We will �rst discuss methods which relies on the output of an MCMC
algorithm generating samples θ(i ) � π.

Perhaps surprisingly there is no simple way to estimate Z from these
samples.

Estimating Z is actually a problem typically more complex to solve
than sampling from π (θ) .
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Chib�s Identity

For any θ 2 Θ, we have

Z =
γ (θ)

π (θ)
.

Assume we can come up with a pointwise estimate of π (θ), say

bπ (θ) = 1
N

N

∑
i=1
K
�

θ � θ(i )
�

where K (�) is a smoothing kernel, e.g. Gaussian.
Then we can obtain bZ (θ) = γ (θ)bπ (θ)
Typically, we will pick for θ the conditional mean estimate

θ =
1
N

N

∑
i=1

θ(i ).
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Coming up with a good smoothing kernel is di¢ cult in practice even
if there exists a huge literature on the subject.

Consider the special case where we have

π (θ) = π (θ1, θ2) = π (θ2j θ1)π (θ1)

= π ( θ2j θ1)
γ (θ1)

Z
where π (θ1j θ2) is standard and γ (θ1) is known.
We have for any θ1 the identity

Z =
γ (θ1)

π (θ1)

To approximate π (θ1), we use the identity

π (θ1) =
Z

π ( θ1j θ2)π (θ2) dθ2

� 1
N

N

∑
i=1

π
�

θ1j θ(i )2
�

where
�

θ
(i )
1 , θ

(i )
2

�
might have been generated using the Gibbs sampler.
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Similarly, we would usually pick for θ1 =
1
N ∑N

i=1 θ
(i )
1 and the �nal

estimate is bZ (θ1) = γ (θ1)

1
N ∑N

i=1 π
�

θ1j θ(i )2
� .

This choice performs much better than a standard smoothing
estimate.

This approach remains however limited to low-dimensional problems.
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Harmonic Mean Estimate

Let us introduce the auxiliary probability distribution q (θ) then we
have the following identity

1
Z
=
Z q (θ)

γ (θ)
π (θ) dθ.

q (θ) is not an importance distribution here, π (θ) is.
It suggests the following Monte Carlo approximation

b1
Z
=
1
N

N

∑
i=1

q
�

θ(i )
�

γ
�

θ(i )
� , i.e. bZ =

0@ 1
N

N

∑
i=1

q
�

θ(i )
�

γ
�

θ(i )
�
1A�1 .

This algorithm requires selecting a distribution q (θ) such that for any
θ 2 Θ

q (θ)
π (θ)

< C
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Example: If π (θ) = p ( θj y) then it is tempting to select
q (θ) = p (θ) and b1

Z
=
1
N

N

∑
i=1

1

p
�
y j θ(i )

� .

However, this estimate will have an unbounded variance in most cases
as p ( θj y) has typically thinner tails than p (θ) .
Even if we pick q(θ)

π(θ)
< C , the variance of this estimate will typically

be large.

The harmonic mean estimate is restricted to low-dimensional
problems.
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(Brute Force) Importance Sampling

Assume now that we will based our MC estimate of Z on samples
from another distribution q (θ) .

We have the identity

Z =
Z

γ (θ)

q (θ)
q (θ) dθ

so by using samples θ(i ) � q (θ)

bZ = 1
N

N

∑
i=1

γ
�

θ(i )
�

q
�

θ(i )
� .

For the algorithm to work properly, we need

π (θ)

q (θ)
< C .

Once more, this is nothing but Importance Sampling and will fail for
high-dimensional problem.
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Bridge Sampling

Assume you have two distributions π1 (θ) and π0 (θ), we are
interested in computing the ratio

Z1
Z0
=

R
γ1 (θ) dθR
γ0 (θ) dθ

.

The Bridge sampling identity is

Z1
Z0
=

R
γ1 (θ) α (θ)π0 (θ) dθR
γ0 (θ) α (θ)π1 (θ) dθ

where α (θ) is an arbitrary function satisfyingZ
α (θ)π0 (θ)π1 (θ) dθ < ∞
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Bridge Sampling

This suggests the following MC estimate given N0 samples θ
(i )
0 from

π0 (θ) and N1 samples θ
(i )
1 from π1 (θ)

cZ1
Z0
=

1
N0 ∑N

i=1 γ1

�
θ
(i )
0

�
α
�

θ
(i )
0

�
1
N1 ∑N

i=1 γ0

�
θ
(i )
1

�
α
�

θ
(i )
1

� .

Taking for example α (θ) = γ�10 (θ), we have

Z1
Z0
=
Z

γ1 (θ)

γ0 (θ)
π0 (θ) dθ

which is the harmonic mean estimate.
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Bridge sampling is thus a generalization of what we have discussed
before.

Assuming that we can obtain iid samples from π0 (θ) and π1 (θ) then
the optimal α (θ) in the sense of minimizing the asymptotic variance

of log
�cZ1
Z0

�
is given by

α (θ) ∝
1

s0π0 (θ) + s1π1 (θ)

∝
1

s0Z�10 γ0 (θ) + s1Z
�1
1 γ1 (θ)

where

s0 =
N0

N0 +N1
, s1 =

N1
N0 +N1

.

Clearly, this optimal choice cannot be selected but it suggests using
an iterative procedure.

Such a procedure can considerably improve performance of �naive�
techniques but is still limited.
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From Bridge Sampling to Path Sampling

We can rewrite

α (θ) =
γ1/2 (θ)

γ0 (θ) .γ1 (θ)

where γ1/2 (θ) is an intermediate unnormalized density and

Z1
Z0

=

R
γ1 (θ) α (θ)π0 (θ) dθR
γ0 (θ) α (θ)π1 (θ) dθ

=

R γ1/2(θ)
γ0(θ)

π0 (θ) dθR γ1/2(θ)
γ1(θ)

π1 (θ) dθ

=
Z1/2/Z0
Z1/2/Z1

So we can think of bridge sampling as moving from γ0 to γ1 by
introducing γ1/2 and the optimal intermediate (unnormalized)
distribution is

γ1/2 (θ) =
π0 (θ)π1 (θ)

s0π0 (θ) + s1π1 (θ)
.
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We can push this bridge idea further by introducing L� 1
intermediate distributions; say γ ( θj αl ) where l = 0, ..., L with
γ ( θj α0) = γ0 (θ) and γ ( θj αL) = γ1 (θ) and
Z (αl ) =

R
γ ( θj αl ) dθ using

Z1
Z0
=

L

∏
l=1

Z (αl )
Z (αl�1)

.

Using a sequence of intermediate distributions to move from γ0 (θ) to
γ1 (θ) is a crucial and ubiquitous idea in Monte Carlo.

In the case where γ0 (θ) = p (θ) and γ1 (θ) = p (θ, y) then we can
pick

γ ( θj α) = p (θ) [p (y j θ)]α

to move smoothly from the prior to the posterior.
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Path Sampling

The path sampling identity is a limiting case of bridge sampling as
L! ∞.

It starts from

d logZ (α)
dα

=
d
dα
log

Z
γ (θj α) dθ

=
1

Z (α)

Z d
dα

γ ( θj α) dθ

=
1

Z (α)

Z d log γ ( θj α)
dα

γ ( θj α) dθ

=
Z d log γ (θj α)

dα
π ( θj α) dθ

Integrating from α = 0 to 1 then

log
Z (1)
Z (0)

=
Z 1

0

Z d log γ ( θj α)
dα

π ( θj α) dθdα
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γ ( θj α) dθ

=
Z d log γ ( θj α)

dα
π ( θj α) dθ

Integrating from α = 0 to 1 then

log
Z (1)
Z (0)

=
Z 1

0

Z d log γ ( θj α)
dα

π ( θj α) dθdα
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Note that this identity is nothing but the famous score identity in
statistics; i.e. if we have

p (y j α) =
Z
p (x , y j α) dx

then
d log p (y j α)

dα
=
Z d log p (x , y j α)

dα
p (x j y , α) dx .

Extension to a multivariate parameter α is straightforward. We
introduce

α (t) = (α1 (t) , ..., αk (t))

where γ (θj α (0)) = γ0 (θ) and γ ( θj α (1)) = γ1 (θ) then

d logZ (α (t))
dt

=
Z d log γ ( θj α (t))

dt
π ( θj α (t)) dθ

where

d log γ ( θj α (t))
dt

=
k

∑
i=1

Z dαi (t)
dt

∂ log γ ( θj α (t))
∂αi (t)

π ( θj α (t)) dθ
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Practical Implementation

We �rst discretize α 2 [0, 1] using Monte Carlo or a simple grid

log
Z (1)
Z (0)

� L
L

∑
i=1

Z d log γ ( θj α)
dα

����
α= i

L

π

�
θj i
L

�
dθ.

We typically use MCMC to obtain N samples θ
(j)
i
L
from π

�
θj iL

�
for

each i = 1, ..., L.

We construct the estimate

\
log

Z (1)
Z (0)

=
L
N

L

∑
i=1

N

∑
j=1

d log γ
�

θ
(j)
i
L

��� iL�
dα

�������
α= i

L

.
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Jarzinsky�s identity

Consider a sequence of distributions to πn (θ) such that

πn (θ) =
γn (θ)

Zn

with π0 (θ) a simple distribution (Z0 known) and πL (θ) =
γL(θ)
ZL

is
the target.

Introduce a sequence of MCMC transition kernels such thatZ
πn (θ)Kn

�
θ, θ0

�
dθ = πn

�
θ0
�
.

Jarzinsky�s identity states that

ZL
Z0
=
Z  L

∏
n=1

γn (θn�1)

γn�1 (θn�1)

!
π0 (θ0)

L

∏
n=1

Kn (θn�1, θn) dθ0:n
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So if θ
(i )
0:n � π0 (θ0)

L

∏
n=1

Kn (θn�1, θn) then

cZL
Z0
=
1
N

N

∑
i=1

L

∏
n=1

γn

�
θ
(i )
n�1

�
γn�1

�
θ
(i )
n�1

� .

This equality is very powerful and shows that it is possible to estimate
unbiasedly ZL/Z0 using non-homogeneous Markov chain simulation.
This has had a major impact in statistical physics since its
introduction in 1997.
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Proof of Jarzinsky�s inequality: We introduce a probability distribution

πL (θL)
L�1
∏
n=0

Ln (θn+1, θn)

then

ZL
Z0
=
Z γL (θL)

L�1
∏
n=0

Ln (θn+1, θn)

γ0 (θ0)
L

∏
n=1

Kn (θn�1, θn)

.π0 (θ0)
L

∏
n=1

Kn (θn�1, θn) dθ0:n

If

Ln�1 (θn, θn�1) =
πn (θn�1)Kn (θn�1, θn)

πn (θn)

then Jarzynski�s equality follows. Ln�1 (θn, θn�1) is the time-reversal
kernel associated to Kn (θn�1, θn) .
Note that if Kn is πn-reversible then

πn (θn�1)Kn (θn�1, θn)
πn (θn)

= Kn (θn, θn�1) .
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Advantages of Jarzynski�s inequality over path sampling

No need to run a lot of MCMC chains until equilibrium.
Simple importance sampling method which can be parallelized.

Drawbacks

It is just importance sampling and the variance will be huge if the
sequence of distributions is not carefully selected.
Selecting Ln�1 (θn , θn�1) as the time reversal kernel is computationally
convenient but far from optimal.

AD () March 2007 21 / 26



Advantages of Jarzynski�s inequality over path sampling

No need to run a lot of MCMC chains until equilibrium.

Simple importance sampling method which can be parallelized.

Drawbacks

It is just importance sampling and the variance will be huge if the
sequence of distributions is not carefully selected.
Selecting Ln�1 (θn , θn�1) as the time reversal kernel is computationally
convenient but far from optimal.

AD () March 2007 21 / 26



Advantages of Jarzynski�s inequality over path sampling

No need to run a lot of MCMC chains until equilibrium.
Simple importance sampling method which can be parallelized.

Drawbacks

It is just importance sampling and the variance will be huge if the
sequence of distributions is not carefully selected.
Selecting Ln�1 (θn , θn�1) as the time reversal kernel is computationally
convenient but far from optimal.

AD () March 2007 21 / 26



Advantages of Jarzynski�s inequality over path sampling

No need to run a lot of MCMC chains until equilibrium.
Simple importance sampling method which can be parallelized.

Drawbacks

It is just importance sampling and the variance will be huge if the
sequence of distributions is not carefully selected.
Selecting Ln�1 (θn , θn�1) as the time reversal kernel is computationally
convenient but far from optimal.

AD () March 2007 21 / 26



Advantages of Jarzynski�s inequality over path sampling

No need to run a lot of MCMC chains until equilibrium.
Simple importance sampling method which can be parallelized.

Drawbacks

It is just importance sampling and the variance will be huge if the
sequence of distributions is not carefully selected.

Selecting Ln�1 (θn , θn�1) as the time reversal kernel is computationally
convenient but far from optimal.

AD () March 2007 21 / 26



Advantages of Jarzynski�s inequality over path sampling

No need to run a lot of MCMC chains until equilibrium.
Simple importance sampling method which can be parallelized.

Drawbacks

It is just importance sampling and the variance will be huge if the
sequence of distributions is not carefully selected.
Selecting Ln�1 (θn , θn�1) as the time reversal kernel is computationally
convenient but far from optimal.

AD () March 2007 21 / 26



Application to Mixture Models

Consider 100 data

Yi �
4

∑
k=1ωi

N
�
µi , σ

2
i

�

We set (conditionally) conjugate priors on ω1:4, µ1:4, σ
2
1:4

ω1:4 � D (1, 1, 1, 1) ,
µj � N

�
ξ, κ�1

�
, λj � Ga(ν,χ).

We consider

πn(ω1:4, µ1:4, σ
2
1:4
�� y1:100) ∝

�
f
�
y1:100jω1:4, µ1:4, σ

2
1:4
��φn

�π
�
ω1:4, µ1:4, σ

2
1:4
�
.

where 0 � φ1 < � � � < φp = 1 are tempering parameters.
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We simulated 100 data with weights 0.25, means (-3,0,3,6) and
standard deviations 0.55.

The posterior admits 4! well-separated modes
We use a MCMC kernel Kn with invariant distribution πn and the
time reversal backward kernel.

The MCMC kernel Kn is a composition of the following update steps:

Update µ1:r via a MH kernel with additive normal random walk
proposal.
Update λ1:r via a MH kernel with multiplicative log-normal random
walk proposal.
Update ω1:r via a MH kernel with additive normal random walk
proposal on the logit scale.
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We ran the algorithm with N = 1000 particles for p =50, 100, 200,
500 and 1000 time steps with 1 and 10 MCMC iterations per time
step.

We selected a piecewise linear cooling schedule fφng. Over 1000 time
steps, the sequence increased uniformly from 0 to 15/100 for the �rst
200 time points then from 15/100 to 40/100 for the next 400 and
�nally from 40/100 to 1 for the last 400 time points. The other time
speci�cations had the same proportion of time attributed to the
tempering parameter setting.

Additional simulations with resampling
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Sampler Details Iterations per time step
AIS (50 time steps) 1 10
Avg. Log Posterior -191.07 -166.73

Avg. Log Normalizing Constant -249.04 -242.07
AIS (100 time steps) 1 10
Avg. Log Posterior -180.76 -162.37

Avg. Log Normalizing Constant -250.22 -244.17
AIS (200 time steps) 1 10
Avg. Log Posterior -174.40 -160.00

Avg. Log Normalizing Constant -247.45 -245.92
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Sampler Details Iterations per time step
AIS (500 time steps) 1 10
Avg. Log Posterior -167.67 -157.06

Avg. Log Normalizing Constant -247.30 -247.94
AIS (1000 time steps) 1 10
Avg. Log Posterior -163.14 -155.31

Avg. Log Normalizing Constant -247.50 -247.36
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