CPSC 535

Trans-dimensional MCMC

AD

March 2007

- Bayesian Model Selection
- Bayesian Model Selection
- Metropolis-Hastings on a General State-Space
- Bayesian Model Selection
- Metropolis-Hastings on a General State-Space
- Trans-dimensional Markov chain Monte Carlo.
- Most Bayesian models discussed until now: prior $p(\theta)$ and likelihood $p(y \mid \theta)$. Using MCMC, we sample from

$$
p(\theta \mid y)=\frac{p(\theta) p(y \mid \theta)}{\int p(\theta) p(y \mid \theta) d \theta}
$$

- Most Bayesian models discussed until now: prior $p(\theta)$ and likelihood $p(y \mid \theta)$. Using MCMC, we sample from

$$
p(\theta \mid y)=\frac{p(\theta) p(y \mid \theta)}{\int p(\theta) p(y \mid \theta) d \theta}
$$

- We discuss several examples where the model under study is fully specified.
- Most Bayesian models discussed until now: prior $p(\theta)$ and likelihood $p(y \mid \theta)$. Using MCMC, we sample from

$$
p(\theta \mid y)=\frac{p(\theta) p(y \mid \theta)}{\int p(\theta) p(y \mid \theta) d \theta}
$$

- We discuss several examples where the model under study is fully specified.
- In practice, we might have a collection of candidate models. This class of problems include cases where "the number of unknowns is something you don't know" (Green, 1995).

Bayesian Model Selection

- Assume we have a (countable) set \mathcal{K} of candidate models then an associated Bayesian model is such that

Bayesian Model Selection

- Assume we have a (countable) set \mathcal{K} of candidate models then an associated Bayesian model is such that
- k denotes the model and has a prior probability $p(k)$.

Bayesian Model Selection

- Assume we have a (countable) set \mathcal{K} of candidate models then an associated Bayesian model is such that
- k denotes the model and has a prior probability $p(k)$.
- $\theta_{k} \in \Theta_{k}$ is the unknown parameter associated to model k of prior $p\left(\theta_{k} \mid k\right)$.

Bayesian Model Selection

- Assume we have a (countable) set \mathcal{K} of candidate models then an associated Bayesian model is such that
- k denotes the model and has a prior probability $p(k)$.
- $\theta_{k} \in \Theta_{k}$ is the unknown parameter associated to model k of prior $p\left(\theta_{k} \mid k\right)$.
- The likelihood is $p\left(y \mid k, \theta_{k}\right)$.

Bayesian Model Selection

- Assume we have a (countable) set \mathcal{K} of candidate models then an associated Bayesian model is such that
- k denotes the model and has a prior probability $p(k)$.
- $\theta_{k} \in \Theta_{k}$ is the unknown parameter associated to model k of prior $p\left(\theta_{k} \mid k\right)$.
- The likelihood is $p\left(y \mid k, \theta_{k}\right)$.
- You can think of it as a "standard" Bayesian model of parameter $\left(k, \theta_{k}\right) \in \cup_{i \in \mathcal{K}}\left(\{i\} \times \Theta_{i}\right)$.
- The Bayes' rule gives the posterior

$$
p\left(k, \theta_{k} \mid y\right)=\frac{p(k) p\left(\theta_{k} \mid k\right) p\left(y \mid k, \theta_{k}\right)}{\sum_{i \in \mathcal{K}} \int_{\Theta_{i}} p(i) p\left(\theta_{i} \mid i\right) p\left(y \mid i, \theta_{i}\right) d \theta_{i}}
$$

defined on $\cup_{i \in \mathcal{K}}\left(\{i\} \times \Theta_{i}\right)$.

- The Bayes' rule gives the posterior

$$
p\left(k, \theta_{k} \mid y\right)=\frac{p(k) p\left(\theta_{k} \mid k\right) p\left(y \mid k, \theta_{k}\right)}{\sum_{i \in \mathcal{K}} \int_{\Theta_{i}} p(i) p\left(\theta_{i} \mid i\right) p\left(y \mid i, \theta_{i}\right) d \theta_{i}}
$$

defined on $\cup_{i \in \mathcal{K}}\left(\{i\} \times \Theta_{i}\right)$.

- From this posterior, we can compute

$$
p(k \mid y) \text { and } \frac{p(y \mid k)}{p(y \mid j)}=\frac{p(k \mid y)}{p(j \mid y)} \frac{p(j)}{p(k)}
$$

or performing Bayesian model averaging

$$
p\left(y^{\prime} \mid y\right)=\sum_{i \in \mathcal{K}} \int_{\Theta_{i}} p\left(y^{\prime} \mid i, \theta_{i}\right) p\left(i, \theta_{i} \mid y\right) d \theta_{i}
$$

Example: Autoregression

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by an AR of order k

$$
Y_{n}=\sum_{i=1}^{k} a_{i} Y_{n-i}+\sigma V_{n} \text { where } V_{n} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}(0,1)
$$

and we have $\theta_{k}=\left(a_{1: k}, \sigma^{2}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{+}$.

Example: Autoregression

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by an AR of order k

$$
Y_{n}=\sum_{i=1}^{k} a_{i} Y_{n-i}+\sigma V_{n} \text { where } V_{n} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}(0,1)
$$

and we have $\theta_{k}=\left(a_{1: k}, \sigma^{2}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{+}$.

- We need to defined a prior $p\left(k, \theta_{k}\right)=p(k) p\left(\theta_{k} \mid k\right)$, say

$$
\begin{aligned}
p(k) & =k_{\max }^{-1} \text { for } k \in \mathcal{K}, \\
p\left(\theta_{k} \mid k\right) & =\mathcal{N}\left(a_{1: k} ; 0, \sigma^{2} \delta^{2} I_{k}\right) \mathcal{I} \mathcal{G}\left(\sigma^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right) .
\end{aligned}
$$

Example: Autoregression

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by an AR of order k

$$
Y_{n}=\sum_{i=1}^{k} a_{i} Y_{n-i}+\sigma V_{n} \text { where } V_{n} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}(0,1)
$$

and we have $\theta_{k}=\left(a_{1: k}, \sigma^{2}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{+}$.

- We need to defined a prior $p\left(k, \theta_{k}\right)=p(k) p\left(\theta_{k} \mid k\right)$, say

$$
\begin{aligned}
p(k) & =k_{\max }^{-1} \text { for } k \in \mathcal{K} \\
p\left(\theta_{k} \mid k\right) & =\mathcal{N}\left(a_{1: k} ; 0, \sigma^{2} \delta^{2} I_{k}\right) \mathcal{I} \mathcal{G}\left(\sigma^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right) .
\end{aligned}
$$

- One should be careful, the parameters denoted similarly can have a different "meaning" so that computing say $p\left(\sigma^{2} \mid y\right)$ does not mean much.

Example: Autoregression

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by an AR of order k

$$
Y_{n}=\sum_{i=1}^{k} a_{i} Y_{n-i}+\sigma V_{n} \text { where } V_{n} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}(0,1)
$$

and we have $\theta_{k}=\left(a_{1: k}, \sigma^{2}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{+}$.

- We need to defined a prior $p\left(k, \theta_{k}\right)=p(k) p\left(\theta_{k} \mid k\right)$, say

$$
\begin{aligned}
p(k) & =k_{\max }^{-1} \text { for } k \in \mathcal{K} \\
p\left(\theta_{k} \mid k\right) & =\mathcal{N}\left(a_{1: k} ; 0, \sigma^{2} \delta^{2} I_{k}\right) \mathcal{I} \mathcal{G}\left(\sigma^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right) .
\end{aligned}
$$

- One should be careful, the parameters denoted similarly can have a different "meaning" so that computing say $p\left(\sigma^{2} \mid y\right)$ does not mean much.
- Some authors favour a more precise notation $\theta_{k}=\left(a_{k, 1: k}, \sigma_{k}^{2}\right)$ but this can be cumbersome.

Example: Finite Mixture of Gaussians

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by a mixture of k Gaussians

$$
Y_{n} \sim \sum_{i=1}^{k} \pi_{i} \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

and we have $\theta_{k}=\left(\pi_{1: k}, \mu_{1: k}, \sigma_{1: k}^{2}\right) \in S_{k} \times \mathbb{R}^{k} \times\left(\mathbb{R}^{+}\right)^{k}$.

Example: Finite Mixture of Gaussians

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by a mixture of k Gaussians

$$
Y_{n} \sim \sum_{i=1}^{k} \pi_{i} \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

and we have $\theta_{k}=\left(\pi_{1: k}, \mu_{1: k}, \sigma_{1: k}^{2}\right) \in S_{k} \times \mathbb{R}^{k} \times\left(\mathbb{R}^{+}\right)^{k}$.

- We need to defined a prior $p\left(k, \theta_{k}\right)=p(k) p\left(\theta_{k} \mid k\right)$, say

$$
\begin{aligned}
p(k) & =\frac{1}{k_{\max }} \\
p\left(\theta_{k} \mid k\right) & =\mathcal{D}\left(\pi_{1: k} ; 1, \ldots, 1\right) \prod_{i=1}^{k} \mathcal{N}\left(\mu_{i} ; \alpha, \beta\right) \mathcal{I} \mathcal{G}\left(\sigma_{i}^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right)
\end{aligned}
$$

Example: Finite Mixture of Gaussians

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by a mixture of k Gaussians

$$
Y_{n} \sim \sum_{i=1}^{k} \pi_{i} \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

and we have $\theta_{k}=\left(\pi_{1: k}, \mu_{1: k}, \sigma_{1: k}^{2}\right) \in S_{k} \times \mathbb{R}^{k} \times\left(\mathbb{R}^{+}\right)^{k}$.

- We need to defined a prior $p\left(k, \theta_{k}\right)=p(k) p\left(\theta_{k} \mid k\right)$, say

$$
\begin{aligned}
p(k) & =\frac{1}{k_{\max }} \\
p\left(\theta_{k} \mid k\right) & =\mathcal{D}\left(\pi_{1: k} ; 1, \ldots, 1\right) \prod_{i=1}^{k} \mathcal{N}\left(\mu_{i} ; \alpha, \beta\right) \mathcal{I} \mathcal{G}\left(\sigma_{i}^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right) .
\end{aligned}
$$

- Some authors favour a more precise notation

$$
\theta_{k}=\left(\pi_{k, 1: k}, \mu_{k, 1: k}, \sigma_{k, 1: k}^{2}\right)
$$

Problem Statement

- As stated before, Bayesian model selection problems corresponds to the case where the parameter space is simply $\cup_{k \in \mathcal{K}}\left(\{k\} \times \Theta_{k}\right)$.

Problem Statement

- As stated before, Bayesian model selection problems corresponds to the case where the parameter space is simply $\cup_{k \in \mathcal{K}}\left(\{k\} \times \Theta_{k}\right)$.
- Can we define MCMC algorithms - i.e. Markov chain kernels with fixed invariant distribution $\pi\left(k, \theta_{k}\right)=\pi(k) \pi_{k}\left(\theta_{k}\right)$ - ?

Problem Statement

- As stated before, Bayesian model selection problems corresponds to the case where the parameter space is simply $\cup_{k \in \mathcal{K}}\left(\{k\} \times \Theta_{k}\right)$.
- Can we define MCMC algorithms - i.e. Markov chain kernels with fixed invariant distribution $\pi\left(k, \theta_{k}\right)=\pi(k) \pi_{k}\left(\theta_{k}\right)$ - ?
- We are going to present a generalization of MH after revisiting first the MH algorithm.
- We say that a measure $\gamma(d x)$ admits a density with respect to a measure $\lambda(d x)$ if for any (measurable) set $A \in B(\mathcal{X})$

$$
\lambda(A)=0 \Rightarrow \gamma(A)=0
$$

and we call

$$
\frac{\gamma(d x)}{\lambda(d x)}=f(x)
$$

the density of $\gamma(d x)$ with respect to $\lambda(d x)$.

- We say that a measure $\gamma(d x)$ admits a density with respect to a measure $\lambda(d x)$ if for any (measurable) set $A \in B(\mathcal{X})$

$$
\lambda(A)=0 \Rightarrow \gamma(A)=0
$$

and we call

$$
\frac{\gamma(d x)}{\lambda(d x)}=f(x)
$$

the density of $\gamma(d x)$ with respect to $\lambda(d x)$.

- In 99% of the applications in statistics $\lambda(d x)$ is the Lebesgue measure $d x$ and we write

$$
\frac{\gamma(d x)}{\lambda(d x)}=\frac{\gamma(d x)}{d x}=\gamma(x)
$$

- The standard MH algorithm where $\mathcal{X} \subset \mathbb{R}^{d}$ corresponds to

$$
K\left(x, d x^{\prime}\right)=\alpha\left(x, x^{\prime}\right) q\left(x, d x^{\prime}\right)+\left(1-\int \alpha(x, z) q(x, d z)\right) \delta_{x}\left(d x^{\prime}\right)
$$

where

$$
\alpha\left(x, x^{\prime}\right)=\min \left\{1, \frac{\pi\left(x^{\prime}\right) q\left(x^{\prime}, x\right)}{\pi(x) q\left(x, x^{\prime}\right)}\right\}
$$

- The standard MH algorithm where $\mathcal{X} \subset \mathbb{R}^{d}$ corresponds to

$$
K\left(x, d x^{\prime}\right)=\alpha\left(x, x^{\prime}\right) q\left(x, d x^{\prime}\right)+\left(1-\int \alpha(x, z) q(x, d z)\right) \delta_{x}\left(d x^{\prime}\right)
$$

where

$$
\alpha\left(x, x^{\prime}\right)=\min \left\{1, \frac{\pi\left(x^{\prime}\right) q\left(x^{\prime}, x\right)}{\pi(x) q\left(x, x^{\prime}\right)}\right\}
$$

- You should think of

$$
\frac{\pi\left(x^{\prime}\right) q\left(x^{\prime}, x\right)}{\pi(x) q\left(x, x^{\prime}\right)}
$$

not as just a "number"!

- The acceptance ratio corresponds to a ratio of probability measures -importance weight- defined on the same spaces

$$
\frac{\pi\left(d x^{\prime}\right) q\left(x^{\prime}, d x\right)}{\pi(d x) q\left(x, d x^{\prime}\right)}=\frac{\pi\left(x^{\prime}\right) d x^{\prime} q\left(x^{\prime}, x\right) d x}{\pi(x) d x q\left(x, x^{\prime}\right) d x^{\prime}}=\frac{\pi\left(x^{\prime}\right) q\left(x^{\prime}, x\right)}{\pi(x) q\left(x, x^{\prime}\right)}
$$

- The acceptance ratio corresponds to a ratio of probability measures -importance weight- defined on the same spaces

$$
\frac{\pi\left(d x^{\prime}\right) q\left(x^{\prime}, d x\right)}{\pi(d x) q\left(x, d x^{\prime}\right)}=\frac{\pi\left(x^{\prime}\right) d x^{\prime} q\left(x^{\prime}, x\right) d x}{\pi(x) d x q\left(x, x^{\prime}\right) d x^{\prime}}=\frac{\pi\left(x^{\prime}\right) q\left(x^{\prime}, x\right)}{\pi(x) q\left(x, x^{\prime}\right)}
$$

- You can only compared points defined on the same joint space. If you have $x=\left(x_{1}, x_{2}\right)$ and $\pi_{1}\left(d x_{1}\right)=\pi_{1}\left(x_{1}\right) d x_{1}$, $\pi_{2}\left(d x_{1}, d x_{2}\right)=\pi_{2}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$, you can compute numerically

$$
\frac{\pi_{2}\left(x_{1}, x_{2}\right)}{\pi_{1}\left(x_{1}\right)}
$$

but it means nothing as the measures π_{1} and π_{2} are not defined on the same space. You CANNOT compare a surface to a volume!

- In the general case where \mathcal{X} is a union of subspaces of different dimensions, you might want to move from $x \in \mathbb{R}^{d}$ to $x^{\prime} \in \mathbb{R}^{d^{\prime}}$.
- In the general case where \mathcal{X} is a union of subspaces of different dimensions, you might want to move from $x \in \mathbb{R}^{d}$ to $x^{\prime} \in \mathbb{R}^{d^{\prime}}$.
- To construct this move, you can use $u \in \mathbb{R}^{r}$ and $u^{\prime} \in \mathbb{R}^{r^{\prime}}$ and a one-to-one differentiable mapping $h: \mathbb{R}^{d} \times \mathbb{R}^{r} \rightarrow \mathbb{R}^{d^{\prime}} \times \mathbb{R}^{r^{\prime}}$

$$
\left(x^{\prime}, u^{\prime}\right)=h(x, u) \text { where } u \sim g
$$

and

$$
(x, u)=h^{-1}\left(x^{\prime}, u^{\prime}\right) \text { where } u^{\prime} \sim g^{\prime} .
$$

- In the general case where \mathcal{X} is a union of subspaces of different dimensions, you might want to move from $x \in \mathbb{R}^{d}$ to $x^{\prime} \in \mathbb{R}^{d^{\prime}}$.
- To construct this move, you can use $u \in \mathbb{R}^{r}$ and $u^{\prime} \in \mathbb{R}^{r^{\prime}}$ and a one-to-one differentiable mapping $h: \mathbb{R}^{d} \times \mathbb{R}^{r} \rightarrow \mathbb{R}^{d^{\prime}} \times \mathbb{R}^{r^{\prime}}$

$$
\left(x^{\prime}, u^{\prime}\right)=h(x, u) \text { where } u \sim g
$$

and

$$
(x, u)=h^{-1}\left(x^{\prime}, u^{\prime}\right) \text { where } u^{\prime} \sim g^{\prime} .
$$

- We need $d+r=d^{\prime}+r^{\prime}$ and typically, if $d<d^{\prime}$, then $r^{\prime}=0$ and $r=d^{\prime}-d$, that is in most case the variable u^{\prime} is not introduced.
- We can rewrite formally

$$
\pi(d x) q\left(x,\left(d x^{\prime}, d u^{\prime}\right)\right)=\pi(x) g(u) d x d u
$$

and

$$
\pi\left(d x^{\prime}\right) q\left(x^{\prime},(d x, d u)\right)=\pi\left(x^{\prime}\right) g^{\prime}\left(u^{\prime}\right) d x^{\prime} d u^{\prime}
$$

- We can rewrite formally

$$
\pi(d x) q\left(x,\left(d x^{\prime}, d u^{\prime}\right)\right)=\pi(x) g(u) d x d u
$$

and

$$
\pi\left(d x^{\prime}\right) q\left(x^{\prime},(d x, d u)\right)=\pi\left(x^{\prime}\right) g^{\prime}\left(u^{\prime}\right) d x^{\prime} d u^{\prime}
$$

- An acceptance ratio ensuring π-reversibility of this trans-dimensional move is given by

$$
\frac{\pi\left(d x^{\prime}\right) q\left(x^{\prime},(d x, d u)\right)}{\pi(d x) q\left(x,\left(d x^{\prime}, d u^{\prime}\right)\right)}=\frac{\pi\left(x^{\prime}\right) g^{\prime}\left(u^{\prime}\right)}{\pi\left(x^{\prime}\right) g(u)}\left|\frac{\partial\left(x^{\prime}, u^{\prime}\right)}{\partial(x, u)}\right|
$$

- We can rewrite formally

$$
\pi(d x) q\left(x,\left(d x^{\prime}, d u^{\prime}\right)\right)=\pi(x) g(u) d x d u
$$

and

$$
\pi\left(d x^{\prime}\right) q\left(x^{\prime},(d x, d u)\right)=\pi\left(x^{\prime}\right) g^{\prime}\left(u^{\prime}\right) d x^{\prime} d u^{\prime}
$$

- An acceptance ratio ensuring π-reversibility of this trans-dimensional move is given by

$$
\frac{\pi\left(d x^{\prime}\right) q\left(x^{\prime},(d x, d u)\right)}{\pi(d x) q\left(x,\left(d x^{\prime}, d u^{\prime}\right)\right)}=\frac{\pi\left(x^{\prime}\right) g^{\prime}\left(u^{\prime}\right)}{\pi\left(x^{\prime}\right) g(u)}\left|\frac{\partial\left(x^{\prime}, u^{\prime}\right)}{\partial(x, u)}\right|
$$

- In this respect, the RJMCMC is an extension of standard MH as you need to introduce auxiliary variables u and u^{\prime}.
- Assume we have a distribution defined on $\{1\} \times \mathbb{R} \cup\{2\} \times \mathbb{R} \times \mathbb{R}$. We want to propose some moves to go from $(1, \theta)$ to $\left(2, \theta_{1}, \theta_{2}\right)$.
- Assume we have a distribution defined on $\{1\} \times \mathbb{R} \cup\{2\} \times \mathbb{R} \times \mathbb{R}$. We want to propose some moves to go from $(1, \theta)$ to $\left(2, \theta_{1}, \theta_{2}\right)$.
- We can propose $u \sim g \in \mathbb{R}$ and set

$$
\left(\theta_{1}, \theta_{2}\right)=h(\theta, u)=(\theta, u)
$$

i.e. we do not need to introduce a variable u^{\prime}. Its inverse is given by

$$
(\theta, u)=h^{-1}\left(\theta_{1}, \theta_{2}\right)=\left(\theta_{1}, \theta_{2}\right)
$$

- Assume we have a distribution defined on $\{1\} \times \mathbb{R} \cup\{2\} \times \mathbb{R} \times \mathbb{R}$. We want to propose some moves to go from $(1, \theta)$ to $\left(2, \theta_{1}, \theta_{2}\right)$.
- We can propose $u \sim g \in \mathbb{R}$ and set

$$
\left(\theta_{1}, \theta_{2}\right)=h(\theta, u)=(\theta, u)
$$

i.e. we do not need to introduce a variable u^{\prime}. Its inverse is given by

$$
(\theta, u)=h^{-1}\left(\theta_{1}, \theta_{2}\right)=\left(\theta_{1}, \theta_{2}\right)
$$

- The acceptance probability for this "birth" move is given by

$$
\begin{aligned}
& \min \left(1, \frac{\pi\left(2, \theta_{1}, \theta_{2}\right)}{\pi(1, \theta)} \frac{1}{g(u)}\left|\frac{\partial\left(\theta_{1}, \theta_{2}\right)}{\partial(\theta, u)}\right|\right) \\
= & \min \left(1, \frac{\pi\left(2, \theta_{1}, \theta_{2}\right)}{\pi\left(1, \theta_{1}\right) g\left(\theta_{2}\right)}\right) .
\end{aligned}
$$

- The acceptance probability for the associated "death move" is

$$
\min \left(1, \frac{\pi(1, \theta)}{\pi\left(2, \theta_{1}, \theta_{2}\right)} g(u)\left|\frac{\partial(\theta, u)}{\partial\left(\theta_{1}, \theta_{2}\right)}\right|\right)=\min \left(1, \frac{\pi(1, \theta) g(u)}{\pi(2, \theta, u)}\right)
$$

- The acceptance probability for the associated "death move" is $\min \left(1, \frac{\pi(1, \theta)}{\pi\left(2, \theta_{1}, \theta_{2}\right)} g(u)\left|\frac{\partial(\theta, u)}{\partial\left(\theta_{1}, \theta_{2}\right)}\right|\right)=\min \left(1, \frac{\pi(1, \theta) g(u)}{\pi(2, \theta, u)}\right)$
- Once the birth move is defined then the death move follows automatically. In the death move, we do not simulate from g but its expression still appear in the acceptance probability.
- To simplify notation -as in Green (1995) \& Robert (2004)-, we don't emphasize that actually we can have the proposal g which is a function of the current point θ but it is possible!
- To simplify notation -as in Green (1995) \& Robert (2004)-, we don't emphasize that actually we can have the proposal g which is a function of the current point θ but it is possible!
- We can propose $u \sim g(\cdot \mid \theta) \in \mathbb{R}$ and set

$$
\left(\theta_{1}, \theta_{2}\right)=h(\theta, u)=(\theta, u) .
$$

Its inverse is given by

$$
(\theta, u)=h^{-1}\left(\theta_{1}, \theta_{2}\right)=\left(\theta_{1}, \theta_{2}\right)
$$

- To simplify notation -as in Green (1995) \& Robert (2004)-, we don't emphasize that actually we can have the proposal g which is a function of the current point θ but it is possible!
- We can propose $u \sim g(\cdot \mid \theta) \in \mathbb{R}$ and set

$$
\left(\theta_{1}, \theta_{2}\right)=h(\theta, u)=(\theta, u)
$$

Its inverse is given by

$$
(\theta, u)=h^{-1}\left(\theta_{1}, \theta_{2}\right)=\left(\theta_{1}, \theta_{2}\right)
$$

- The acceptance probability for this "birth" move is given by

$$
\begin{aligned}
& \min \left(1, \frac{\pi\left(2, \theta_{1}, \theta_{2}\right)}{\pi(1, \theta)} \frac{1}{g(u \mid \theta)}\left|\frac{\partial\left(\theta_{1}, \theta_{2}\right)}{\partial(\theta, u)}\right|\right) \\
= & \min \left(1, \frac{\pi\left(2, \theta_{1}, \theta_{2}\right)}{\pi\left(1, \theta_{1}\right) g\left(\theta_{2} \mid \theta_{1}\right)}\right) .
\end{aligned}
$$

- The acceptance probability for the associated "death move" is

$$
\begin{aligned}
& \min \left(1, \frac{\pi(1, \theta)}{\pi\left(2, \theta_{1}, \theta_{2}\right)} g(u \mid \theta)\left|\frac{\partial(\theta, u)}{\partial\left(\theta_{1}, \theta_{2}\right)}\right|\right) \\
= & \min \left(1, \frac{\pi(1, \theta) g(u \mid \theta)}{\pi(2, \theta, u)}\right)
\end{aligned}
$$

- The acceptance probability for the associated "death move" is

$$
\begin{aligned}
& \min \left(1, \frac{\pi(1, \theta)}{\pi\left(2, \theta_{1}, \theta_{2}\right)} g(u \mid \theta)\left|\frac{\partial(\theta, u)}{\partial\left(\theta_{1}, \theta_{2}\right)}\right|\right) \\
= & \min \left(1, \frac{\pi(1, \theta) g(u \mid \theta)}{\pi(2, \theta, u)}\right)
\end{aligned}
$$

- Once the birth move is defined then the death move follows automatically. In the death move, we do not simulate from g but its expression still appears in the acceptance probability.
- The acceptance probability for the associated "death move" is

$$
\begin{aligned}
& \min \left(1, \frac{\pi(1, \theta)}{\pi\left(2, \theta_{1}, \theta_{2}\right)} g(u \mid \theta)\left|\frac{\partial(\theta, u)}{\partial\left(\theta_{1}, \theta_{2}\right)}\right|\right) \\
= & \min \left(1, \frac{\pi(1, \theta) g(u \mid \theta)}{\pi(2, \theta, u)}\right)
\end{aligned}
$$

- Once the birth move is defined then the death move follows automatically. In the death move, we do not simulate from g but its expression still appears in the acceptance probability.
- Clearly if we have $g\left(\theta_{2} \mid \theta_{1}\right)=\pi\left(\theta_{2} \mid 2, \theta_{1}\right)$ then the expressions simplify

$$
\begin{aligned}
\min \left(1, \frac{\pi\left(2, \theta_{1}, \theta_{2}\right)}{\pi\left(1, \theta_{1}\right) g\left(\theta_{2} \mid \theta_{1}\right)}\right) & =\min \left(1, \frac{\pi\left(2, \theta_{1}\right)}{\pi\left(1, \theta_{1}\right)}\right) \\
\min \left(1, \frac{\pi(1, \theta) g(u \mid \theta)}{\pi(2, \theta, u)}\right) & =\min \left(1, \frac{\pi(1, \theta)}{\pi(2, \theta)}\right)
\end{aligned}
$$

- Assume we have a distribution defined on $\{1\} \times \mathbb{R} \cup\{2\} \times \mathbb{R} \times \mathbb{R}$. We want to propose some moves to go from $(1, \theta)$ to $\left(2, \theta_{1}, \theta_{2}\right)$.
- Assume we have a distribution defined on $\{1\} \times \mathbb{R} \cup\{2\} \times \mathbb{R} \times \mathbb{R}$. We want to propose some moves to go from $(1, \theta)$ to $\left(2, \theta_{1}, \theta_{2}\right)$.
- We can propose $u \sim g \in \mathbb{R}$ and set

$$
\left(\theta_{1}, \theta_{2}\right)=h(\theta, u)=(\theta-u, \theta+u) .
$$

Its inverse is given by

$$
(\theta, u)=h^{-1}\left(\theta_{1}, \theta_{2}\right)=\left(\frac{\theta_{1}+\theta_{2}}{2}, \frac{\theta_{2}-\theta_{1}}{2}\right)
$$

- Assume we have a distribution defined on $\{1\} \times \mathbb{R} \cup\{2\} \times \mathbb{R} \times \mathbb{R}$. We want to propose some moves to go from $(1, \theta)$ to $\left(2, \theta_{1}, \theta_{2}\right)$.
- We can propose $u \sim g \in \mathbb{R}$ and set

$$
\left(\theta_{1}, \theta_{2}\right)=h(\theta, u)=(\theta-u, \theta+u) .
$$

Its inverse is given by

$$
(\theta, u)=h^{-1}\left(\theta_{1}, \theta_{2}\right)=\left(\frac{\theta_{1}+\theta_{2}}{2}, \frac{\theta_{2}-\theta_{1}}{2}\right)
$$

- The acceptance probability for this "split" move is given by

$$
\begin{aligned}
& \min \left(1, \frac{\pi\left(2, \theta_{1}, \theta_{2}\right)}{\pi(1, \theta)} \frac{1}{g(u)}\left|\frac{\partial\left(\theta_{1}, \theta_{2}\right)}{\partial(\theta, u)}\right|\right) \\
= & \min \left(1, \frac{\pi\left(2, \theta_{1}, \theta_{2}\right)}{\pi\left(1, \frac{\theta_{1}+\theta_{2}}{2}\right)} \frac{2}{g\left(\frac{\theta_{2}-\theta_{1}}{2}\right)}\right)
\end{aligned}
$$

- The acceptance probability for the associated "merge move" is

$$
\begin{aligned}
& \min \left(1, \frac{\pi(1, \theta)}{\pi\left(2, \theta_{1}, \theta_{2}\right)} g(u)\left|\frac{\partial(\theta, u)}{\partial\left(\theta_{1}, \theta_{2}\right)}\right|\right) \\
= & \min \left(1, \frac{\pi(1, \theta)}{\pi(2, \theta-u, \theta+u)} \frac{g(u)}{2}\right)
\end{aligned}
$$

- The acceptance probability for the associated "merge move" is

$$
\begin{aligned}
& \min \left(1, \frac{\pi(1, \theta)}{\pi\left(2, \theta_{1}, \theta_{2}\right)} g(u)\left|\frac{\partial(\theta, u)}{\partial\left(\theta_{1}, \theta_{2}\right)}\right|\right) \\
= & \min \left(1, \frac{\pi(1, \theta)}{\pi(2, \theta-u, \theta+u)} \frac{g(u)}{2}\right)
\end{aligned}
$$

- Once the split move is defined then the merge move follows automatically. In the merge move, we do not simulate from g but its expression still appear in the acceptance probability.
- In practice, the algorithm is based on a combination of moves to move from $x=\left(k, \theta_{k}\right)$ to $x^{\prime}=\left(k^{\prime}, \theta_{k^{\prime}}\right)$ indexed by $i \in \mathcal{M}$ and in this case we just need to have

$$
\begin{aligned}
& \int_{\left(x, x^{\prime}\right) \in A \times B} \pi(d x) \alpha_{i}\left(x, x^{\prime}\right) q_{i}\left(x, d x^{\prime}\right) \\
= & \int_{\left(x, x^{\prime}\right) \in A \times B} \pi\left(d x^{\prime}\right) \alpha_{i}\left(x^{\prime}, x\right) q_{i}\left(x^{\prime}, d x\right)
\end{aligned}
$$

to ensure that the kernel $P(x, B)$ defined for $x \notin B$

$$
P(x, B)=\frac{1}{|\mathcal{M}|} \sum_{i \in \mathcal{M}} \int_{B} \alpha_{i}\left(x, x^{\prime}\right) q_{i}\left(x, d x^{\prime}\right)
$$

is π-reversible.

- In practice, the algorithm is based on a combination of moves to move from $x=\left(k, \theta_{k}\right)$ to $x^{\prime}=\left(k^{\prime}, \theta_{k^{\prime}}\right)$ indexed by $i \in \mathcal{M}$ and in this case we just need to have

$$
\begin{aligned}
& \int_{\left(x, x^{\prime}\right) \in A \times B} \pi(d x) \alpha_{i}\left(x, x^{\prime}\right) q_{i}\left(x, d x^{\prime}\right) \\
= & \int_{\left(x, x^{\prime}\right) \in A \times B} \pi\left(d x^{\prime}\right) \alpha_{i}\left(x^{\prime}, x\right) q_{i}\left(x^{\prime}, d x\right)
\end{aligned}
$$

to ensure that the kernel $P(x, B)$ defined for $x \notin B$

$$
P(x, B)=\frac{1}{|\mathcal{M}|} \sum_{i \in \mathcal{M}} \int_{B} \alpha_{i}\left(x, x^{\prime}\right) q_{i}\left(x, d x^{\prime}\right)
$$

is π-reversible.

- In practice, we would like to have

$$
P(x, B)=\sum_{i \in \mathcal{M}} \int_{B} j_{i}(x) \alpha_{i}\left(x, x^{\prime}\right) q_{i}\left(x, d x^{\prime}\right)
$$

where $j_{i}(x)$ is the probability of selecting the move i once we are in x and $\sum_{i \in \mathcal{M}} j_{i}(x)=1$.

- In this case reversibility is ensured if

$$
\begin{aligned}
& \int_{\left(x, x^{\prime}\right) \in A \times B} \pi(d x) j_{i}(x) \alpha_{i}\left(x, x^{\prime}\right) q_{i}\left(x, d x^{\prime}\right) \\
& =\int_{\left(x, x^{\prime}\right) \in A \times B} \pi\left(d x^{\prime}\right) j_{i}\left(x^{\prime}\right) \alpha_{i}\left(x^{\prime}, x\right) q_{i}\left(x^{\prime}, d x\right)
\end{aligned}
$$

which is satisfied if

$$
\alpha_{i}\left(x, x^{\prime}\right)=\min \left(1, \frac{\pi\left(x^{\prime}\right) j_{i}\left(x^{\prime}\right) g_{i}^{\prime}\left(u^{\prime}\right)}{\pi(x) j_{i}(x) g_{i}(u)}\left|\frac{\partial\left(x^{\prime}, u^{\prime}\right)}{\partial(x, u)}\right|\right) .
$$

- In this case reversibility is ensured if

$$
\begin{aligned}
& \int_{\left(x, x^{\prime}\right) \in A \times B} \pi(d x) j_{i}(x) \alpha_{i}\left(x, x^{\prime}\right) q_{i}\left(x, d x^{\prime}\right) \\
& =\int_{\left(x, x^{\prime}\right) \in A \times B} \pi\left(d x^{\prime}\right) j_{i}\left(x^{\prime}\right) \alpha_{i}\left(x^{\prime}, x\right) q_{i}\left(x^{\prime}, d x\right)
\end{aligned}
$$

which is satisfied if

$$
\alpha_{i}\left(x, x^{\prime}\right)=\min \left(1, \frac{\pi\left(x^{\prime}\right) j_{i}\left(x^{\prime}\right) g_{i}^{\prime}\left(u^{\prime}\right)}{\pi(x) j_{i}(x) g_{i}(u)}\left|\frac{\partial\left(x^{\prime}, u^{\prime}\right)}{\partial(x, u)}\right|\right) .
$$

- In practice, we will only have a limited number of moves possible from each point x.

Reversible Jump MCMC Algorithm

- For each point $x=\left(k, \theta_{k}\right)$, we define a collection of potential moves selected randomly with probability $j_{i}(x)$ where $i \in \mathcal{M}$

Reversible Jump MCMC Algorithm

- For each point $x=\left(k, \theta_{k}\right)$, we define a collection of potential moves selected randomly with probability $j_{i}(x)$ where $i \in \mathcal{M}$
- To move from $x=\left(k, \theta_{k}\right)$ to $x^{\prime}=\left(k^{\prime}, \theta_{k^{\prime}}\right)$, we build one (or several) deterministic differentiable and inversible mapping(s)

$$
\left(\theta_{k^{\prime}}, u_{k^{\prime}, k}\right)=T_{k, k^{\prime}}\left(\theta_{k}, u_{k, k^{\prime}}\right)
$$

where $u_{k, k^{\prime}} \sim g_{k, k^{\prime}}$ and $u_{k^{\prime}, k} \sim g_{k^{\prime}, k}$ and we accept the move with proba

$$
\min \left(1, \frac{\pi\left(k^{\prime}, \theta_{k^{\prime}}\right) j_{i}\left(k^{\prime}, \theta_{k^{\prime}}\right) g_{k^{\prime}, k}\left(u_{k^{\prime}, k}\right)}{\pi\left(k, \theta_{k}\right) j_{i}\left(k, \theta_{k}\right) g_{k, k^{\prime}}\left(u_{k, k^{\prime}}\right)}\left|\frac{\partial T_{k, k^{\prime}}\left(\theta_{k}, u_{k, k^{\prime}}\right)}{\partial\left(\theta_{k}, u_{k, k^{\prime}}\right)}\right|\right)
$$

Example: Autoregression

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by an AR of order k

$$
Y_{n}=\sum_{i=1}^{k} a_{i} Y_{n-i}+\sigma V_{n} \text { where } V_{n} \sim \mathcal{N}(0,1)
$$

and we have $\theta_{k}=\left(a_{k, 1: k}, \sigma_{k}^{2}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{+}$where

$$
\begin{aligned}
p(k) & =k_{\max }^{-1} \text { for } k \in \mathcal{K}, \\
p\left(\theta_{k} \mid k\right) & =\mathcal{N}\left(a_{k, 1: k} ; 0, \sigma_{k}^{2} \delta^{2} I_{k}\right) \mathcal{I G}\left(\sigma^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right) .
\end{aligned}
$$

Example: Autoregression

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by an AR of order k

$$
Y_{n}=\sum_{i=1}^{k} a_{i} Y_{n-i}+\sigma V_{n} \text { where } V_{n} \sim \mathcal{N}(0,1)
$$

and we have $\theta_{k}=\left(a_{k, 1: k}, \sigma_{k}^{2}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{+}$where

$$
\begin{aligned}
p(k) & =k_{\max }^{-1} \text { for } k \in \mathcal{K}, \\
p\left(\theta_{k} \mid k\right) & =\mathcal{N}\left(a_{k, 1: k} ; 0, \sigma_{k}^{2} \delta^{2} I_{k}\right) \mathcal{I} \mathcal{G}\left(\sigma^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right) .
\end{aligned}
$$

- For sake of simplicity, we assume here that the initial conditions $y_{1-k_{\max }: 0}=(0, \ldots, 0)$ are known and we want to sample from

$$
p\left(\theta_{k}, k \mid y_{1: T}\right)
$$

Example: Autoregression

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by an AR of order k

$$
Y_{n}=\sum_{i=1}^{k} a_{i} Y_{n-i}+\sigma V_{n} \text { where } V_{n} \sim \mathcal{N}(0,1)
$$

and we have $\theta_{k}=\left(a_{k, 1: k}, \sigma_{k}^{2}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{+}$where

$$
\begin{aligned}
p(k) & =k_{\max }^{-1} \text { for } k \in \mathcal{K}, \\
p\left(\theta_{k} \mid k\right) & =\mathcal{N}\left(a_{k, 1: k} ; 0, \sigma_{k}^{2} \delta^{2} I_{k}\right) \mathcal{I} \mathcal{G}\left(\sigma^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right) .
\end{aligned}
$$

- For sake of simplicity, we assume here that the initial conditions $y_{1-k_{\max }: 0}=(0, \ldots, 0)$ are known and we want to sample from

$$
p\left(\theta_{k}, k \mid y_{1: T}\right) .
$$

- Note that this is not very clever as $p\left(k \mid y_{1: T}\right)$ is known up to a normalizing constant!
- We propose the following moves. If we have $\left(k, a_{1: k}, \sigma_{k}^{2}\right)$ then with probability b_{k} we propose a birth move if $k \leq k_{\max }$, with proba u_{k} we propose an update move and with proba $d_{k}=1-b_{k}-u_{k}$ we propose a death move.
- We propose the following moves. If we have $\left(k, a_{1: k}, \sigma_{k}^{2}\right)$ then with probability b_{k} we propose a birth move if $k \leq k_{\max }$, with proba u_{k} we propose an update move and with proba $d_{k}=1-b_{k}-u_{k}$ we propose a death move.
- We have $d_{1}=0$ and $b_{k \max }=0$.
- We propose the following moves. If we have $\left(k, a_{1: k}, \sigma_{k}^{2}\right)$ then with probability b_{k} we propose a birth move if $k \leq k_{\max }$, with proba u_{k} we propose an update move and with proba $d_{k}=1-b_{k}-u_{k}$ we propose a death move.
- We have $d_{1}=0$ and $b_{k \text { max }}=0$.
- The update move can simply done in a Gibbs step as

$$
p\left(\theta_{k} \mid y_{1: T}, k\right)=\mathcal{N}\left(a_{k, 1: k} ; m_{k}, \sigma^{2} \Sigma_{k}\right) \mathcal{I} \mathcal{G}\left(\sigma^{2} ; \frac{v_{k}}{2}, \frac{\gamma_{k}}{2}\right)
$$

- Birth move: We propose to move from k to $k+1$

$$
\left(a_{k+1,1: k}, a_{k+1, k+1}, \sigma_{k+1}^{2}\right)=\left(a_{k, 1: k}, u, \sigma_{k}^{2}\right) \text { where } u \sim g_{k, k+1}
$$

and the acceptance probability is

$$
\min \left(1, \frac{p\left(a_{k, 1: k}, u, \sigma_{k}^{2}, k+1 \mid y_{1: T}\right) d_{k+1}}{p\left(a_{k, 1: k}, \sigma_{k}^{2}, k \mid y_{1: T}\right) b_{k} g_{k, k+1}(u)}\right) .
$$

- Birth move: We propose to move from k to $k+1$

$$
\left(a_{k+1,1: k}, a_{k+1, k+1}, \sigma_{k+1}^{2}\right)=\left(a_{k, 1: k}, u, \sigma_{k}^{2}\right) \text { where } u \sim g_{k, k+1}
$$

and the acceptance probability is

$$
\min \left(1, \frac{p\left(a_{k, 1: k}, u, \sigma_{k}^{2}, k+1 \mid y_{1: T}\right) d_{k+1}}{p\left(a_{k, 1: k}, \sigma_{k}^{2}, k \mid y_{1: T}\right) b_{k} g_{k, k+1}(u)}\right) .
$$

- Death move: We propose to move from k to $k-1$

$$
\left(a_{k-1,1: k-1}, u, \sigma_{k-1}^{2}\right)=\left(a_{k, 1: k-1}, a_{k, k}, \sigma_{k}^{2}\right)
$$

and the acceptance probability is

$$
\min \left(1, \frac{p\left(a_{k, 1: k-1}, \sigma_{k}^{2}, k-1 \mid y_{1: T}\right) b_{k-1} g_{k-1, k}\left(a_{k, k}\right)}{p\left(a_{k, 1: k}, \sigma_{k}^{2}, k \mid y_{1: T}\right) d_{k}}\right)
$$

- The performance are obviously very dependent on the selection of the proposal distribution. We select whenever possible the full conditional distribution, i.e. we have

$$
\begin{aligned}
u= & a_{k+1, k+1} \sim p\left(a_{k+1, k+1} \mid y_{1: T}, a_{k, 1: k}, \sigma_{k}^{2}, k+1\right) \text { and } \\
& \min \left(1, \frac{p\left(a_{k, 1: k}, u, \sigma_{k}^{2}, k+1 \mid y_{1: T}\right) d_{k+1}}{p\left(a_{k, 1: k}, \sigma_{k}^{2}, k \mid y_{1: T}\right) b_{k} p\left(u \mid y_{1: T}, a_{k, 1: k}, \sigma_{k}^{2}, k+1\right)}\right) \\
= & \min \left(1, \frac{p\left(a_{k, 1: k}, \sigma_{k}^{2}, k+1 \mid y_{1: T}\right) d_{k+1}}{p\left(a_{k, 1: k}, \sigma_{k}^{2}, k \mid y_{1: T}\right) b_{k}}\right) .
\end{aligned}
$$

- The performance are obviously very dependent on the selection of the proposal distribution. We select whenever possible the full conditional distribution, i.e. we have

$$
\begin{aligned}
u= & a_{k+1, k+1} \sim p\left(a_{k+1, k+1} \mid y_{1: T}, a_{k, 1: k}, \sigma_{k}^{2}, k+1\right) \text { and } \\
& \min \left(1, \frac{p\left(a_{k, 1: k}, u, \sigma_{k}^{2}, k+1 \mid y_{1: T}\right) d_{k+1}}{p\left(a_{k, 1: k}, \sigma_{k}^{2}, k \mid y_{1: T}\right) b_{k} p\left(u \mid y_{1: T}, a_{k, 1: k}, \sigma_{k}^{2}, k+1\right)}\right) \\
= & \min \left(1, \frac{p\left(a_{k, 1: k}, \sigma_{k}^{2}, k+1 \mid y_{1: T}\right) d_{k+1}}{p\left(a_{k, 1: k}, \sigma_{k}^{2}, k \mid y_{1: T}\right) b_{k}}\right) .
\end{aligned}
$$

- In such cases, it is actually possible to reject a candidate before sampling it!
- We simulate 200 data with $k=5$ and use 10,000 iterations of RJMCMC.
- We simulate 200 data with $k=5$ and use 10,000 iterations of RJMCMC.
- The algorithm output is $\left(k^{(i)}, \theta_{k}^{(i)}\right) \sim p\left(\theta_{k}, k \mid y\right)$ (asymptotically).
- We simulate 200 data with $k=5$ and use 10,000 iterations of RJMCMC.
- The algorithm output is $\left(k^{(i)}, \theta_{k}^{(i)}\right) \sim p\left(\theta_{k}, k \mid y\right)$ (asymptotically).
- The histogram of $\left(k^{(i)}\right)$ yields an estimate of $p(k \mid y)$.
- We simulate 200 data with $k=5$ and use 10,000 iterations of RJMCMC.
- The algorithm output is $\left(k^{(i)}, \theta_{k}^{(i)}\right) \sim p\left(\theta_{k}, k \mid y\right)$ (asymptotically).
- The histogram of $\left(k^{(i)}\right)$ yields an estimate of $p(k \mid y)$.
- Histograms of $\left(\theta_{k}^{(i)}\right)$ for which $k^{(i)}=k_{0}$ yields estimates of $p\left(\theta_{k_{0}} \mid y, k_{0}\right)$.
- We simulate 200 data with $k=5$ and use 10,000 iterations of RJMCMC.
- The algorithm output is $\left(k^{(i)}, \theta_{k}^{(i)}\right) \sim p\left(\theta_{k}, k \mid y\right)$ (asymptotically).
- The histogram of $\left(k^{(i)}\right)$ yields an estimate of $p(k \mid y)$.
- Histograms of $\left(\theta_{k}^{(i)}\right)$ for which $k^{(i)}=k_{0}$ yields estimates of $p\left(\theta_{k_{0}} \mid y, k_{0}\right)$.
- The algorithm provides us with an estimate of $p(k \mid y)$ which matches analytical expressions.

Example: Finite Mixture of Gaussians

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by a mixture of k Gaussians

$$
Y_{n} \sim \sum_{i=1}^{k} \pi_{i} \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

and we have $\theta_{k}=\left(\pi_{1: k}, \mu_{1: k}, \sigma_{1: k}^{2}\right) \in S_{k} \times \mathbb{R}^{k} \times\left(\mathbb{R}^{+}\right)^{k}$.

Example: Finite Mixture of Gaussians

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by a mixture of k Gaussians

$$
Y_{n} \sim \sum_{i=1}^{k} \pi_{i} \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

and we have $\theta_{k}=\left(\pi_{1: k}, \mu_{1: k}, \sigma_{1: k}^{2}\right) \in S_{k} \times \mathbb{R}^{k} \times\left(\mathbb{R}^{+}\right)^{k}$.

- We need to defined a prior $p\left(k, \theta_{k}\right)=p(k) p\left(\theta_{k} \mid k\right)$, say

$$
\begin{aligned}
p(k) & =k_{\max }^{-1} \text { for } \in \mathcal{K} \\
p\left(\theta_{k} \mid k\right) & =\mathcal{D}\left(\pi_{k, 1: k} ; 1, \ldots, 1\right) \prod_{i=1}^{k} \mathcal{N}\left(\mu_{k, i} ; \alpha, \beta\right) \mathcal{I} \mathcal{G}\left(\sigma_{k, i}^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right) .
\end{aligned}
$$

Example: Finite Mixture of Gaussians

- The model $k \in \mathcal{K}=\left\{1, \ldots, k_{\max }\right\}$ is given by a mixture of k Gaussians

$$
Y_{n} \sim \sum_{i=1}^{k} \pi_{i} \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

and we have $\theta_{k}=\left(\pi_{1: k}, \mu_{1: k}, \sigma_{1: k}^{2}\right) \in S_{k} \times \mathbb{R}^{k} \times\left(\mathbb{R}^{+}\right)^{k}$.

- We need to defined a prior $p\left(k, \theta_{k}\right)=p(k) p\left(\theta_{k} \mid k\right)$, say

$$
\begin{aligned}
p(k) & =k_{\max }^{-1} \text { for } \in \mathcal{K} \\
p\left(\theta_{k} \mid k\right) & =\mathcal{D}\left(\pi_{k, 1: k} ; 1, \ldots, 1\right) \prod_{i=1}^{k} \mathcal{N}\left(\mu_{k, i} ; \alpha, \beta\right) \mathcal{I} \mathcal{G}\left(\sigma_{k, i}^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right) .
\end{aligned}
$$

- Given T data, we are interested in $\pi\left(k, \theta_{k} \mid y_{1: T}\right)$.
- When k is fixed, we will use Gibbs steps to sample from $\pi\left(\theta_{k}, z_{1: T} \mid y_{1: T}, k\right)$ where $z_{1: T}$ are the discrete latent variables such that $\operatorname{Pr}\left(z_{n}=i \mid k, \theta_{k}\right)=\pi_{k, i}$.
- When k is fixed, we will use Gibbs steps to sample from $\pi\left(\theta_{k}, z_{1: T} \mid y_{1: T}, k\right)$ where $z_{1: T}$ are the discrete latent variables such that $\operatorname{Pr}\left(z_{n}=i \mid k, \theta_{k}\right)=\pi_{k, i}$.
- To allow to move in the model space, we define a birth and death move.
- When k is fixed, we will use Gibbs steps to sample from $\pi\left(\theta_{k}, z_{1: T} \mid y_{1: T}, k\right)$ where $z_{1: T}$ are the discrete latent variables such that $\operatorname{Pr}\left(z_{n}=i \mid k, \theta_{k}\right)=\pi_{k, i}$.
- To allow to move in the model space, we define a birth and death move.
- The birth and death moves use as a target $\pi\left(\theta_{k} \mid y_{1: T}, k\right)$ and not $\pi\left(\theta_{k}, z_{1: T} \mid y_{1: T}, k\right) \Rightarrow$ Reduced dimensionality, easier to design moves.
- We propose a naive move to go from $k \rightarrow k+1$ where $j \sim \mathcal{U}_{\{1, \ldots, k+1\}}$

$$
\begin{aligned}
& \mu_{k+1,-j}=\mu_{k, 1: k}, \sigma_{k+1,-j}^{2}=\sigma_{k, 1: k}^{2} \\
& \pi_{k+1,-j}=\left(1-\pi_{k+1, j}\right) \pi_{k,-j}
\end{aligned}
$$

where $\left(\pi_{k+1, j}, \mu_{k+1, j}, \sigma_{k+1, j}^{2}\right) \sim g_{k, k+1}$ (prior distribution in practice).

- We propose a naive move to go from $k \rightarrow k+1$ where $j \sim \mathcal{U}_{\{1, \ldots, k+1\}}$

$$
\begin{aligned}
& \mu_{k+1,-j}=\mu_{k, 1: k}, \sigma_{k+1,-j}^{2}=\sigma_{k, 1: k}^{2} \\
& \pi_{k+1,-j}=\left(1-\pi_{k+1, j}\right) \pi_{k,-j}
\end{aligned}
$$

where $\left(\pi_{k+1, j}, \mu_{k+1, j}, \sigma_{k+1, j}^{2}\right) \sim g_{k, k+1}$ (prior distribution in practice).

- The Jacobian of the transformation is $\left(1-\pi_{k+1, j}\right)^{k-1}$ (only $k-1$ "true" variables for $\pi_{k,-j}$)
- We propose a naive move to go from $k \rightarrow k+1$ where $j \sim \mathcal{U}_{\{1, \ldots, k+1\}}$

$$
\begin{aligned}
& \mu_{k+1,-j}=\mu_{k, 1: k}, \sigma_{k+1,-j}^{2}=\sigma_{k, 1: k}^{2} \\
& \pi_{k+1,-j}=\left(1-\pi_{k+1, j}\right) \pi_{k,-j}
\end{aligned}
$$

where $\left(\pi_{k+1, j}, \mu_{k+1, j}, \sigma_{k+1, j}^{2}\right) \sim g_{k, k+1}$ (prior distribution in practice).

- The Jacobian of the transformation is $\left(1-\pi_{k+1, j}\right)^{k-1}$ (only $k-1$ "true" variables for $\pi_{k,-j}$)
- Now one has to be careful when considering the reverse death move. Assume the death move going from $k+1 \rightarrow k$ by removing the component j.
- The acceptance probability of the birth move is given by $\min (1, A)$ where

$$
\begin{aligned}
A= & \frac{\pi\left(k+1, \pi_{k+1,1: k+1}, \mu_{k+1,1: k+1}, \sigma_{k+1,1: k+1}^{2} \mid y_{1: T}\right)}{\pi\left(k, \pi_{k, 1: k}, \mu_{k, 1: k}, \sigma_{k, 1: k}^{2} \mid y_{1: T}\right)} \\
& \times \frac{\left(d_{k+1, k} /(k+1)\right)\left(1-\pi_{k+1, j}\right)^{k-1}}{\left(b_{k, k+1} /(k+1)\right) g_{k, k+1}\left(\pi_{k+1, j}, \mu_{k+1, j}, \sigma_{j}^{2}\right)} .
\end{aligned}
$$

- The acceptance probability of the birth move is given by $\min (1, A)$ where

$$
\begin{aligned}
A= & \frac{\pi\left(k+1, \pi_{k+1,1: k+1}, \mu_{k+1,1: k+1}, \sigma_{k+1,1: k+1}^{2} \mid y_{1: T}\right)}{\pi\left(k, \pi_{k, 1: k}, \mu_{k, 1: k}, \sigma_{k, 1: k}^{2} \mid y_{1: T}\right)} \\
& \times \frac{\left(d_{k+1, k} /(k+1)\right)\left(1-\pi_{k+1, j}\right)^{k-1}}{\left(b_{k, k+1} /(k+1)\right) g_{k, k+1}\left(\pi_{k+1, j}, \mu_{k+1, j}, \sigma_{j}^{2}\right)} .
\end{aligned}
$$

- This move will work properly if the prior is not too diffuse. Otherwise the acceptance probability will be small.
- The acceptance probability of the birth move is given by $\min (1, A)$ where

$$
\begin{aligned}
A= & \frac{\pi\left(k+1, \pi_{k+1,1: k+1}, \mu_{k+1,1: k+1}, \sigma_{k+1,1: k+1}^{2} \mid y_{1: T}\right)}{\pi\left(k, \pi_{k, 1: k}, \mu_{k, 1: k}, \sigma_{k, 1: k}^{2} \mid y_{1: T}\right)} \\
& \times \frac{\left(d_{k+1, k} /(k+1)\right)\left(1-\pi_{k+1, j}\right)^{k-1}}{\left(b_{k, k+1} /(k+1)\right) g_{k, k+1}\left(\pi_{k+1, j}, \mu_{k+1, j}, \sigma_{j}^{2}\right)} .
\end{aligned}
$$

- This move will work properly if the prior is not too diffuse. Otherwise the acceptance probability will be small.
- We have $(k+1)$ birth moves to move from $k \rightarrow k+1$ and $k+1$ associated death moves.
- To move from $k \rightarrow k+1$, one can also select a split move of the component $j \sim \mathcal{U}_{\{1, \ldots, k\}}$

$$
\begin{aligned}
\pi_{k+1, j} & =u_{1} \pi_{k, j}, \quad \pi_{k+1, j+1}=\left(1-u_{1}\right) \pi_{k, j} \\
\mu_{k+1, j} & =u_{2} \mu_{k, j}, \mu_{k+1, j+1}=\frac{\pi_{k, j}-\pi_{k+1, j} u_{2}}{\pi_{k, j}-\pi_{k+1, j}} \mu_{k, j} \\
\sigma_{k+1, j}^{2} & =u_{3} \sigma_{k, j}^{2}, \sigma_{k+1, j+1}^{2}=\frac{\pi_{k, j}-\pi_{k+1, j} u_{3}}{\pi_{k, j}-\pi_{k+1, j}} \sigma_{k, j}^{2}
\end{aligned}
$$

with $u_{1}, u_{2}, u_{3} \sim \mathcal{U}(0,1)$.

- The associated merge move is

$$
\begin{aligned}
\pi_{k, j} & =\pi_{k+1, j}+\pi_{k+1, j+1} \\
\pi_{k, j} \mu_{k, j} & =\pi_{k+1, j} \mu_{k+1, j}+\pi_{k+1, j+1} \mu_{k+1, j+1} \\
\pi_{k, j} \sigma_{k, j}^{2} & =\pi_{k+1, j} \sigma_{k+1, j}^{2}+\pi_{k+1, j+1} \sigma_{k+1, j+1}^{2}
\end{aligned}
$$

- The associated merge move is

$$
\begin{aligned}
\pi_{k, j} & =\pi_{k+1, j}+\pi_{k+1, j+1} \\
\pi_{k, j} \mu_{k, j} & =\pi_{k+1, j} \mu_{k+1, j}+\pi_{k+1, j+1} \mu_{k+1, j+1} \\
\pi_{k, j} \sigma_{k, j}^{2} & =\pi_{k+1, j} \sigma_{k+1, j}^{2}+\pi_{k+1, j+1} \sigma_{k+1, j+1}^{2}
\end{aligned}
$$

- The Jacobian of the transformation of the split is given by

$$
\left|\frac{\partial\left(\pi_{k+1,1: k+1}, \mu_{k+1,1: k+1}, \sigma_{k+1,1: k+1}^{2}\right)}{\partial\left(\pi_{k, 1: k}, \mu_{k, 1: k}, \sigma_{k, 1: k}^{2}, u_{1}, u_{2}, u_{3}\right)}\right|=\frac{\pi_{k, j}^{3}}{\left(1-u_{1}\right)^{2}}\left|\mu_{k, j}\right| \sigma_{k, j}^{2}
$$

- It follows that the acceptance probability of the split move with $j \sim \mathcal{U}_{\{1, \ldots, k\}}$ is $\min (1, A)$ where

$$
\begin{aligned}
A= & \frac{\pi\left(k+1, \pi_{k+1,1: k+1}, \mu_{k+1,1: k+1}, \sigma_{k+1,1: k+1}^{2} \mid y_{1: T}\right)}{\pi\left(k, \pi_{k, 1: k}, \mu_{k, 1: k}, \sigma_{k, 1: k}^{2} \mid y_{1: T}\right)} \\
& \times \frac{\left(m_{k+1, k} / k\right)}{\left(s_{k, k+1} / k\right)} \times \frac{\pi_{k, j}^{3}}{\left(1-u_{1}\right)^{2}}\left|\mu_{k, j}\right| \sigma_{k, j}^{2} .
\end{aligned}
$$

- It follows that the acceptance probability of the split move with $j \sim \mathcal{U}_{\{1, \ldots, k\}}$ is $\min (1, A)$ where

$$
\begin{aligned}
A= & \frac{\pi\left(k+1, \pi_{k+1,1: k+1}, \mu_{k+1,1: k+1}, \sigma_{k+1,1: k+1}^{2} \mid y_{1: T}\right)}{\pi\left(k, \pi_{k, 1: k}, \mu_{k, 1: k}, \sigma_{k, 1: k}^{2} \mid y_{1: T}\right)} \\
& \times \frac{\left(m_{k+1, k} / k\right)}{\left(s_{k, k+1} / k\right)} \times \frac{\pi_{k, j}^{3}}{\left(1-u_{1}\right)^{2}}\left|\mu_{k, j}\right| \sigma_{k, j}^{2}
\end{aligned}
$$

- You should think of the split move as a mixture of k split moves and you have k associated merge moves.
- We set $k_{\text {max }}=20$ and we select (rather) informative priors following Green \& Richardson (1999). In practice, it is worth using a hierarchical prior.
- We set $k_{\text {max }}=20$ and we select (rather) informative priors following Green \& Richardson (1999). In practice, it is worth using a hierarchical prior.
- We run the algorithm for over 1,000,000 iterations.
- We set $k_{\text {max }}=20$ and we select (rather) informative priors following Green \& Richardson (1999). In practice, it is worth using a hierarchical prior.
- We run the algorithm for over 1,000,000 iterations.
- We set additional constraints on the mean $\mu_{k, 1}<\mu_{k, 2}<\ldots .<\mu_{k, k}$.
- We set $k_{\text {max }}=20$ and we select (rather) informative priors following Green \& Richardson (1999). In practice, it is worth using a hierarchical prior.
- We run the algorithm for over 1,000,000 iterations.
- We set additional constraints on the mean $\mu_{k, 1}<\mu_{k, 2}<\ldots .<\mu_{k, k}$.
- The cumulative averages stabilize very quickly.

Histogram of \mathbf{k}

Figure: Estimation of the marginal posterior distribution $p\left(k \mid y_{1: T}\right)$

Galaxy clataset

Figure: Estimation of $\mathbb{E}\left[f\left(y \mid k, \theta_{k}\right) \mid y_{1: T}\right]$

- Trans-dimensional MCMC allows us to implement numerically problems with Bayesian model uncertainty.
- Trans-dimensional MCMC allows us to implement numerically problems with Bayesian model uncertainty.
- Practical implementation is relatively easy, theory behind not so easy...
- Trans-dimensional MCMC allows us to implement numerically problems with Bayesian model uncertainty.
- Practical implementation is relatively easy, theory behind not so easy...
- Designing efficient trans-dimensional MCMC algorithms is still a research problem.

