
CPSC 535
Metropolis-Hastings: Applications

AD

March 2007

AD () March 2007 1 / 46



Metropolis-Hastings one-at-a time

Initialization: Select deterministically or randomly
θ =

�
θ
(0)
1 , ..., θ

(0)
p

�
.

Iteration i ; i � 1:

For k = 1 : p

Sample θ
(i )
k using an MH step of proposal distribution

qk
��

θ
(i )
�k , θ

(i�1)
k

�
, θ0k
�
and target π

�
θk j θ

(i )
�k

�
where

θ
(i )
�k =

�
θ
(i )
1 , ..., θ

(i )
k�1, θ

(i�1)
k+1 , ..., θ

(i�1)
p

�
.
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Logistic Regression

In 1986, Challenger exploded; the explosion being the result of an
O-ring failure. It was believed to be a result of a cold weather at the
departure time: 31oF.

We have access to the data of 23 previous �ights which give for �ight
i : Temperature at �ight time xi and yi = 1 failure and zero otherwise
(Robert & Casella, p. 15).

We want to have a model relating Y to x . Obviously this cannot be a
linear model Y = α+ xβ as we want Y 2 f0, 1g.

AD () March 2007 3 / 46



Logistic Regression

In 1986, Challenger exploded; the explosion being the result of an
O-ring failure. It was believed to be a result of a cold weather at the
departure time: 31oF.

We have access to the data of 23 previous �ights which give for �ight
i : Temperature at �ight time xi and yi = 1 failure and zero otherwise
(Robert & Casella, p. 15).

We want to have a model relating Y to x . Obviously this cannot be a
linear model Y = α+ xβ as we want Y 2 f0, 1g.

AD () March 2007 3 / 46



Logistic Regression

In 1986, Challenger exploded; the explosion being the result of an
O-ring failure. It was believed to be a result of a cold weather at the
departure time: 31oF.

We have access to the data of 23 previous �ights which give for �ight
i : Temperature at �ight time xi and yi = 1 failure and zero otherwise
(Robert & Casella, p. 15).

We want to have a model relating Y to x . Obviously this cannot be a
linear model Y = α+ xβ as we want Y 2 f0, 1g.

AD () March 2007 3 / 46



We select a simple logistic regression model

Pr (Y = 1j x) = 1� Pr (Y = 0j x) = exp (α+ xβ)

1+ exp (α+ xβ)
.

Equivalently we have

log it = log
�
Pr (Y = 1j x)
Pr (Y = 0j x)

�
= α+ xβ.

This ensures that the response is binary.
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We follow a Bayesian approach and select
π (α, β) = π (αj b)π (β) = b�1 exp (α) exp

�
�b�1 exp (α)

�
;i.e.

exponential prior on exp(α) and �at prior on β.

b is selected as the data-dependent prior such that E (α) = bα wherebα is the MLE of α (Robert & Casella).

As a simple proposal distribution, we use

q
�
(α, β) ,

�
α0, β0

��
= π

�
α0
�� b�N �

β0; β, bσ2β�
where bσ2β is the variance associated to the MLE bβ.
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The algorithm proceeds as follows at iteration i

Sample (α�, β�) � π (αj b)N
�

β; β(i�1), bσ2β� and compute
ζ
��

α(i�1), β(i�1)
�
, (α�, β�)

�
= min

0@1, π (α�, β�j data)π
�

α(i�1)
��� b�

π
�

α(i�1), β(i�1)
��� data�π (α�j b)

1A

Set
�

α(i ), β(i )
�
= (α�, β�) with probability

ζ
��

α(i�1), β(i�1)
�
, (α�, β�)

�
, otherwise set�

α(i ), β(i )
�
=
�

α(i�1), β(i�1)
�
.
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Figure: Plots of 1k ∑ki=1 α(i ) (left) and 1
k ∑ki=1 β(i ) (right).
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Figure: Histogram estimates of p (αj data) (left) and p ( βj data) (right).
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Probit Regression

We consider the following example: we take 4 measurements from
100 genuine Swiss banknotes and 100 counterfeit ones.

The response variable y is 0 for genuine and 1 for counterfeit and the
explanatory variables are

x1 the length,
x2: the width of the left edge
x3: the width of the right edge
x4: the bottom margin witdth
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Figure: Left: Plot of the status indicator versus the bottom margin width. Right:
Boxplots of the bottom margin width for both counterfeit status.
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Instead of selecting a logistic link, we select a probit one here

Pr (Y = 1j x) = Φ
�
x1β1 + . . .+ x4β4

�
where

Φ (u) =
1p
2π

Z u

�∞
exp

�
�v

2

2

�
dv

For n data, the likelihood is then given by

f (y1:n j β, x1:n) =
n
∏
i=1

Φ
�
xTi β

�yi �
1�Φ

�
xTi β

��1�yi
.

AD () March 2007 11 / 46



Instead of selecting a logistic link, we select a probit one here

Pr (Y = 1j x) = Φ
�
x1β1 + . . .+ x4β4

�
where

Φ (u) =
1p
2π

Z u

�∞
exp

�
�v

2

2

�
dv

For n data, the likelihood is then given by

f (y1:n j β, x1:n) =
n
∏
i=1

Φ
�
xTi β

�yi �
1�Φ

�
xTi β

��1�yi
.

AD () March 2007 11 / 46



We assume a vague prior where β � N (0, 100I4) and we use a
simple random walk sampler with bΣ the covariance matrix associated
to the MLE (estimated using simple deterministic method).

The algorithm is thus simply given at iteration i by

Sample β� � N
�

β(i�1), τ2bΣ� and compute
α
�

β(i�1), β�
�
= min

0@1, π ( β�j y1:n , x1:n)

π
�

β(i�1)
��� y1:n , x1:n

�
1A .

Set β(i ) = β� with probability α
�

β(i�1), β�
�
and β(i ) = β(i�1)

otherwise.

Best results obtained with τ2 = 1.
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Autocorrelation

One way to monitor the performance of the algorithm of the chainn
X (i )

o
consists of displaying ρk = cov

h
X (i ),X (i+k )

i
/var

�
X (i )

�
which can be estimated from the chain, at least for small values of k.

Sometimes one uses an e¤ective sample size measure

Ness = N

 
1+ 2

N0

∑
k=1

bρk
!�1/2

.

This represents approximately the sample size of an equivalent i.i.d.
samples.

One should be very careful with such measures which can be very
misleading.
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We found for E (βj y1:n, x1:n) = (�1.22, 0.95, 0.96, 1.15) so a simple
plug-in estimate of the predictive probability of a counterfeit bill is

bp = Φ
�
�1.22x1 + 0.95x2 + 0.96x3 + 1.15x4

�
For x = (214.9, 130.1, 129.9, 9.5), we obtain bp = 0.59.

A better estimate is obtained byZ
Φ
�

β1x
1 + β2x

2 + β3x
3 + β4x

4�π (βj y1:n, x1:n) dβ
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Auxiliary Variables for Probit Regression

It is impossible to use Gibbs to sample directly from π (βj y1:n, x1:n) .

Introduce the following unobserved latent variables

Zi � N
�
xTi β, 1

�
,

Yi =

�
1 if Zi > 0
0 otherwise.

We have now de�ne a joint distribution

f (yi , zi j β, xi ) = f (yi j zi ) f (zi j β, xi ) .
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Now we can check that

f (yi = 1j xi , β) =
Z
f (yi , zi j β, xi ) dzi

=
Z ∞

0
f (zi j β, xi ) dzi = Φ

�
xTi β

�
.

) We haven�t changed the model!

We are now going to sample from π (β, z1:n j x1:n, y1:n) instead of
π (βj x1:n, y1:n) because the full conditional distributions are simple

π (βj y1:n, x1:n, z1:n) = π (βj x1:n, z1:n) (standard Gaussian!),

π (z1:n j y1:n, x1:n, β) =
n

∏
i=1

π (zk j yk , xk , β)

where

zk j yk , xk , β �
�
N+

�
xTk β, 1

�
if yk = 1

N�
�
xTk β, 1

�
if yk = 0.
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The results obtained through Gibbs are very similar to MH.

We can also adopt an Zellner�s type prior and obtain very similar
results.

Very similar were also obtained using a logistic fonction using the MH
(Gibbs is feasible but more di¢ cult).
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Warning

Although the introduction of latent variables can be attractive, it can
be also very ine¢ cient.

It is not because you can use the Gibbs sampler that everything works
well!

Consider the following simple generalization of the previous model

Zi � N
�
xi β, σ2

�
, Yi =

�
1 if Zi > 0
0 otherwise.

We complete the model by σ2 � IG (1.5, 1.5) and
βj σ2 � N (0, 100).
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Not only the data Zi and
�

β, σ2
�
are very correlated but we have

Pr
�
Yi = 1j xi , β, σ2

�
= Φ

�
xi β
σ

�

The likelihood only depends on β/σ and the parameters β and σ are
not identi�able.

One way to improve the mixing consists of using an additional MH
step that proposes to randomly rescale the current value.

We use a proposal distribution such that�
β0, σ0

�
= λ (β, σ) with λ � Exp (1)

that proposes to randomly rescale the current value.
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Hidden Markov Model

Consider the following hidden Markov model

Xk j (Xk�1 = xk�1) � fθ ( �j xk�1) , X1 � µ

Yn j (Xk = xk ) � gθ ( �j xk ) ,

and we set a prior π (θ) on the unknown hyperparameters θ.

Given n data, we are interested in the joint posterior

π ( θ, x1:n j y1:n)

There is no closed-form expression for this joint distribution even if
the model is linear Gaussian or for �nite state-space model.
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In previous lectures, we propose sampling from π ( θ, x1:n j y1:n) using
the Gibbs sampler where the variables are updated according to

Xk � π (xk j y1:n, x�k , θ)

For 2 < k < n, we have

π (xk j y1:n, x�k , θ) ∝ π (x1:n, y1:n, θ)

∝ π (θ) µ (x1)
n

∏
i=2
fθ (xi j xi�1)| {z }

prior

n

∏
i=1
gθ (yi j xi )| {z }
likelihood

∝ fθ (xk j xk�1) fθ (xk+1j xk ) gθ (yk j xk )

and θ � π ( θj y1:n, x1:n) (or by subblocks).
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It is often possible to implement the Gibbs sampler even if this can be
expensive; e.g. if you use Accept/Reject to sample from
π (xk j y1:n, x�k , θ) using the proposal
π (xk j x�k , θ) ∝ fθ (xk j xk�1) fθ (xk+1j xk ) .

Even if it is possible to implement the Gibbs sampler, one can expect
a very slow convergence of the algorithm is successive variables are
highly correlated.

Indeed, as you update xk with xk�1 and xk+1 being �xed, then you
cannot move much into the space.
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Consider the very simple case where θ =
�
σ2v , σ

2
w

�
Xk = Xk�1 + Vk where Vk

i.i.d.� N
�
0, σ2v

�
,

Yk = Xk +Wk where Wk
i.i.d.� N

�
0, σ2w

�
then we have

π (xk j x�k , θ) ∝ fθ (xk j xk�1) fθ (xk+1j xk )

= N
�
xk ;

xk�1 + xk+1
2

,
σ2v
2

�
and

π (xk j y1:n, x�k , θ)

∝ π (xk j x�k , θ) gθ (yk j xk )

= N
�
xk ;

σ2vσ2w
σ2v + 2σ2w

�
xk�1 + xk+1

σ2v
+
yk
σ2w

�
,

σ2vσ2w
σ2v + 2σ2w

�
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Assume for the time being that instead of sampling from
π (xk j y1:n, x�k , θ) directly, we use rejection sampling with
π (xk j x�k , θ) as a proposal distribution.

In this case we have to bound

gθ (yk j xk ) =
1p
2πσw

exp

 
� (yk � xk )

2

2σ2w

!
� 1p

2πσw
.

We accept each proposal X � � π (xk j x�k , θ) with probability
exp

�
� (yk�X �)2

2σ2w

�
, so the (unconditional) acceptance probability is

given by

Z
π (xk j x�k , θ) exp

 
� (yk � xk )

2

2σ2w

!
dxk

=
σw exp

�
� 1
2

�
y2k /σ2w � (xk�1 + xk+1)

2 /σ2v

��
p

σ2v + 2σ2w
.
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To improve the algorithm, we would like to be able to sample a whole
block of variables simultaneously; i.e. being able to sample for
1 < k < k + L < n from

π
�
xk :k+Lj y1:n, x�(k :k+L), θ

�
= π (xk :k+Lj yk :k+L, xk�1, xk+L+1, θ)

∝
k+L+1

∏
i=k

fθ (xi j xi�1)
k+L

∏
i=k

gθ (yi j xi ) .

In this case, it is typically impossible to sample from
π
�
xk :k+Lj y1:n, x�(k :k+L), θ

�
exactly as L is large, say 5 or 10.

We are propose to use a MH step of invariant distribution
π
�
xk :k+Lj y1:n, x�(k :k+L), θ

�
instead, hence we need to build a

proposal distribution q
�
(x1:n, θ) , x 0k :k+L

�
.
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We �rst propose to use the conditional prior

q
�
(x1:n, θ) , x 0k :k+L

�
= π

�
xk :k+Lj x�(k :k+L), θ

�
= π (xk :k+Lj xk�1, xk+L+1, θ)

∝
k+L+1

∏
i=k

fθ (xi j xi�1) .

In this case, the candidate X
0
k :k+L � π (xk :k+Lj xk�1, xk+L+1, θ) is

accepted with probability

min
�
1,

π( x 0k :k+Ljyk :k+L ,xk�1,xk+L+1,θ)π( xk :k+L jxk�1,xk+L+1,θ)
π( xk :k+L jyk :k+L ,xk�1,xk+L+1,θ)π( x 0k :k+Ljxk�1,xk+L+1,θ)

�
= min

�
1, ∏k+L

i=k gθ( yi jx 0i )
∏k+L
i=k gθ( yi jxi )

�
Simple but one cannot expect it to be too e¢ cient when the
observations are very informative compared to the prior.
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Consider the case where

Xk = AXk�1 + BVk , Vk
i.i.d.� N (0, I ) .

Particular cases include

Xk = Xk�1 + σVk , where Vk
i.i.d.� N (0, 1) ,

Xk =

�
αk

αk�1

�
=

�
2 -1
1 0

�
Xk�1 +

�
σ
0

�
Vk , Vk

i.i.d.� N (0, 1) .
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In this case, it is simple to see that π (xk :k+Lj xk�1, xk+1, θ) is a
Gaussian distribution.

In (Knorr-Held, 1999), one samples from this distribution by
computing directly the parameters of this joint distribution:
complexity O

�
L2
�
.

We can derive a simpler method of complexity O (L) based on the
following decomposition (omitting θ in the notation)

π (xk :k+Lj xk�1, xk+L+1) =
k+L

∏
i=k

π (xi j xk�1, xk+L+1, xi+1) .

=
k+L

∏
i=k

π (xi j xk�1, xi+1)
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Moreover it is easy to establish the expression for π (xi j xk�1, xi+1)

π (xi j xk�1, xi+1) ∝ π (xi j xk�1) f (xi+1j xi )

as

π (xi j xk�1) =
Z

π (xk :i j xk�1) dxk :i�1 = N (xi ; µi (xk�1) ,Σi )

with, for Xn = AXn�1 + BVn, µk�1 (xk�1) = xk�1, Σk�1 = 0 and for
i � k

µi (xk�1) = Aµi�1 (xk�1) ,

Σi = AΣi�1AT + Σ with Σ = BBT.

To obtain π (xi j xk�1, xi+1), we combine the prior π (xi j xk�1) with
the �likelihood� f (xi+1j xi ) .
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We have π (xi j xk�1) = N (xi ; µi (xk�1) ,Σi ) and
f (xi+1j xi ) = N (xi+1;Axi ,Σ) then

π (xi j xk�1, xi+1) = N
�
xi ; µi (xk�1, xi+1) , eΣi�

where

eΣi =
�

Σ�1i + ATΣ�1A
��1

,

µi (xk�1, xi+1) = eΣi �ATΣ�1xi+1 + Σ�1i µi (xk�1)
�
.

To sample a realization of π (xk :k+Lj xk�1, xk+L+1) , �rst compute
µi (xk�1) ,Σi for i = k, ..., k + L using a forward recursion. Then
sample backward Xk+L � π ( �j xk�1, xk+L+1) ,
Xk+L�1 � π ( �j xk�1,Xk+L) , ..., Xk � π ( �j xk�1,Xk+1) .
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Figure: Number of occurences of rainfall in Tokyo for each day during 1983-1984
reproduced as relative frequencies between 0, 0.5 and 1 (n = 366)
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Consider the following model

Xk =
�

αk
αk�1

�
=

�
2 -1
1 0

�
Xk�1 +

�
σ
0

�
Vk , Vk

i.i.d.� N (0, 1)

and

Yk jXk �
�
B (2,πk ) k 6= 60,
B (1,πk ) k = 60 (February 29)

,

where

πk =
exp (αk )

1+ exp (αk )
.

We also use for σ2 � IG
�

ν0
2 ,

γ0
2

�
.
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We use the block sampling strategies discussed before where
candidates are sampled according to π (xk :k+Lj xk�1, xk+L+1) and
accepted with proba

min

 
1,

∏k+L
i=k g (yi j x 0i )

∏k+L
i=k g (yi j xi )

!
.

The parameter σ2 is updated through a simple Gibbs step

σ2 � π
�

σ2
�� x1:n, y1:n

�
= π

�
σ2
�� x1:n

�
= IG

 
ν0 + n� 1

2
,

γ0 +∑n
k=2 (αk � 2αk�1 + αk�2)

2

2

!

For block size L = 1, 5, 20 and 40, we compute the average
trajectories of 100 parallel chains after 10, 50, 100 and 500 iterations
with initialization xk = 0 for all k, σ2 = 0.1.
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Figure: Average trajectories over 100 chains for L = 1, 5, 20 and 40 from top to
bottom.
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Figure: Average trajectories over 100 chains for L = 1, 5, 20 and 40 from top to
bottom.
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Figure: Average trajectories over 100 chains for L = 1, 5, 20 and 40 from top to
bottom.
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Figure: Average trajectories over 100 chains for L = 1, 5, 20 and 40 from top to
bottom.
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Figure: Traces of α1, α100, α333 and σ2 for L = 1 (left) and L = 20 (right).
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This (naive!) block sampling strategy performs well here because the
likelihood of the observations is fairly �at.

For a linear Gaussian observation equation, Knorr-Held compares this
strategy to a direct Gibbs sampling implementation. As expected, the
conditional proposal strategy is competitive when the observations are
not very informative compared to the prior.

For more complex problems, such strategies are ine¢ cient and we will
need to use the observations to build the proposal.
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(Pitt & Shephard, 1999) propose a more e¢ cient strategy... also
more computationally intensive.

Consider the log full conditional distribution

logπ (xk :k+Lj yk :k+L, xk�1, xk+L+1)
= ∑k+L

i=k log g (yi j xi ) +∑k+L+1
i=k log f (xi+1j xi )

� ∑k+L
i=k log g (yi j xi )� 1

2 ∑k+L+1
i=k (xi+1 � Axi )T Σ�1 (xi+1 � Axi )

which is not quadratic in xi hence π (xk :k+Lj yk :k+L, xk�1, xk+1) is
not Gaussian.

The idea is to expand the log-likelihood part around some point
estimates

log g (yi j xi ) ' log g (yi j bxi ) +r log g (yi j bxi ) . (xi � bxi )
+
1
2
(xi � bxi )Tr2 log g (yi j bxi ) (xi � bxi )
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By doing this, we have a Gaussian approximation of the log-likelihood
and then we obtain a Gaussian proposal
q
�
x1:n, x 0k :k+L

�
= q

�
x�(k :k+L), x

0
k :k+L

�
log q

�
x�(k :k+L), x

0
k :k+L

�
� ∑k+L

i=k r log g (yi j bxi ) . (xi � bxi )
+ 1
2 (xi � bxi )Tr2 log g (yi j bxi ) (xi � bxi )

� 1
2 ∑k+L+1

i=k (xi+1 � Axi )T Σ�1 (xi+1 � Axi )

(Pitt & Shepard, 1999) propose to select

bxk :k+1 = argmaxπ (xk :k+Lj yk :k+L, xk�1, xk+L+1)

and a scheme to sample from q
�
x�(k :k+L), x

0
k :k+L

�
which is of

complexity O (L) .
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This algorithm is applied to the SV model where

Xk = φXk�1 + σVk , Vk
i.i.d.� N (0, 1)

Yk = β exp (Xk/2)Wk , Wk
i.i.d.� N (0, 1) .

Prior are set to φ � U [�1, 1] , σ2 � IG
�

νσ
2 ,

γσ
2

�
and

β � IG
�

νβ

2 ,
γβ

2

�
.

Full conditional distributions of the parameters given x1:n, y1:n are
standard.

Compared to standard single move strategies, the authors report
signi�cant improvement.
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Figure: Autocorrelation plots for
�
φ, σ2, β

�
with L = 1
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Figure: Autocorrelation plots for
�
φ, σ2, β

�
with L = 50 on average
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