CPSC 535

Metropolis-Hastings: Applications

AD

March 2007

Metropolis-Hastings one-at-a time

- Initialization: Select deterministically or randomly

$$
\theta=\left(\theta_{1}^{(0)}, \ldots, \theta_{\rho}^{(0)}\right)
$$

Metropolis-Hastings one-at-a time

- Initialization: Select deterministically or randomly $\theta=\left(\theta_{1}^{(0)}, \ldots, \theta_{p}^{(0)}\right)$.
- Iteration $i ; i \geq 1$:

Metropolis-Hastings one-at-a time

- Initialization: Select deterministically or randomly

$$
\theta=\left(\theta_{1}^{(0)}, \ldots, \theta_{p}^{(0)}\right)
$$

- Iteration $i ; i \geq 1$:
- For $k=1: p$

Metropolis-Hastings one-at-a time

- Initialization: Select deterministically or randomly

$$
\theta=\left(\theta_{1}^{(0)}, \ldots, \theta_{p}^{(0)}\right) .
$$

- Iteration $i ; i \geq 1$:
- For $k=1: p$
- Sample $\theta_{k}^{(i)}$ using an MH step of proposal distribution

$$
\begin{aligned}
& q_{k}\left(\left(\theta_{-k}^{(i)}, \theta_{k}^{(i-1)}\right), \theta_{k}^{\prime}\right) \text { and target } \pi\left(\theta_{k} \mid \theta_{-k}^{(i)}\right) \text { where } \\
& \theta_{-k}^{(i)}=\left(\theta_{1}^{(i)}, \ldots, \theta_{k-1}^{(i)}, \theta_{k+1}^{(i-1)}, \ldots, \theta_{p}^{(i-1)}\right) .
\end{aligned}
$$

Logistic Regression

- In 1986, Challenger exploded; the explosion being the result of an O-ring failure. It was believed to be a result of a cold weather at the departure time: $31^{\circ} \mathrm{F}$.

Logistic Regression

- In 1986, Challenger exploded; the explosion being the result of an O-ring failure. It was believed to be a result of a cold weather at the departure time: $31^{\circ} \mathrm{F}$.
- We have access to the data of 23 previous flights which give for flight i : Temperature at flight time x_{i} and $y_{i}=1$ failure and zero otherwise (Robert \& Casella, p. 15).

Logistic Regression

- In 1986, Challenger exploded; the explosion being the result of an O-ring failure. It was believed to be a result of a cold weather at the departure time: $31^{\circ} \mathrm{F}$.
- We have access to the data of 23 previous flights which give for flight i : Temperature at flight time x_{i} and $y_{i}=1$ failure and zero otherwise (Robert \& Casella, p. 15).
- We want to have a model relating Y to x. Obviously this cannot be a linear model $Y=\alpha+x \beta$ as we want $Y \in\{0,1\}$.
- We select a simple logistic regression model

$$
\operatorname{Pr}(Y=1 \mid x)=1-\operatorname{Pr}(Y=0 \mid x)=\frac{\exp (\alpha+x \beta)}{1+\exp (\alpha+x \beta)}
$$

- We select a simple logistic regression model

$$
\operatorname{Pr}(Y=1 \mid x)=1-\operatorname{Pr}(Y=0 \mid x)=\frac{\exp (\alpha+x \beta)}{1+\exp (\alpha+x \beta)}
$$

- Equivalently we have

$$
\log \text { it }=\log \left(\frac{\operatorname{Pr}(Y=1 \mid x)}{\operatorname{Pr}(Y=0 \mid x)}\right)=\alpha+x \beta
$$

- We select a simple logistic regression model

$$
\operatorname{Pr}(Y=1 \mid x)=1-\operatorname{Pr}(Y=0 \mid x)=\frac{\exp (\alpha+x \beta)}{1+\exp (\alpha+x \beta)}
$$

- Equivalently we have

$$
\log \text { it }=\log \left(\frac{\operatorname{Pr}(Y=1 \mid x)}{\operatorname{Pr}(Y=0 \mid x)}\right)=\alpha+x \beta
$$

- This ensures that the response is binary.
- We follow a Bayesian approach and select
$\pi(\alpha, \beta)=\pi(\alpha \mid b) \pi(\beta)=b^{-1} \exp (\alpha) \exp \left(-b^{-1} \exp (\alpha)\right)$;i.e. exponential prior on $\exp (\alpha)$ and flat prior on β.
- We follow a Bayesian approach and select
$\pi(\alpha, \beta)=\pi(\alpha \mid b) \pi(\beta)=b^{-1} \exp (\alpha) \exp \left(-b^{-1} \exp (\alpha)\right)$;i.e. exponential prior on $\exp (\alpha)$ and flat prior on β.
- b is selected as the data-dependent prior such that $\mathbb{E}(\alpha)=\widehat{\alpha}$ where $\hat{\alpha}$ is the MLE of α (Robert \& Casella).
- We follow a Bayesian approach and select
$\pi(\alpha, \beta)=\pi(\alpha \mid b) \pi(\beta)=b^{-1} \exp (\alpha) \exp \left(-b^{-1} \exp (\alpha)\right)$;i.e. exponential prior on $\exp (\alpha)$ and flat prior on β.
- b is selected as the data-dependent prior such that $\mathbb{E}(\alpha)=\widehat{\alpha}$ where $\hat{\alpha}$ is the MLE of α (Robert \& Casella).
- As a simple proposal distribution, we use

$$
q\left((\alpha, \beta),\left(\alpha^{\prime}, \beta^{\prime}\right)\right)=\pi\left(\alpha^{\prime} \mid b\right) \mathcal{N}\left(\beta^{\prime} ; \beta, \widehat{\sigma}_{\beta}^{2}\right)
$$

where $\widehat{\sigma}_{\beta}^{2}$ is the variance associated to the MLE $\widehat{\beta}$.

The algorithm proceeds as follows at iteration i

- Sample $\left(\alpha^{*}, \beta^{*}\right) \sim \pi(\alpha \mid b) \mathcal{N}\left(\beta ; \beta^{(i-1)}, \widehat{\sigma}_{\beta}^{2}\right)$ and compute

$$
\begin{aligned}
& \zeta\left(\left(\alpha^{(i-1)}, \beta^{(i-1)}\right),\left(\alpha^{*}, \beta^{*}\right)\right) \\
= & \min \left(1, \frac{\pi\left(\alpha^{*}, \beta^{*} \mid \text { data }\right) \pi\left(\alpha^{(i-1)} \mid b\right)}{\pi\left(\alpha^{(i-1)}, \beta^{(i-1)} \mid \text { data }\right) \pi\left(\alpha^{*} \mid b\right)}\right)
\end{aligned}
$$

The algorithm proceeds as follows at iteration i

- Sample $\left(\alpha^{*}, \beta^{*}\right) \sim \pi(\alpha \mid b) \mathcal{N}\left(\beta ; \beta^{(i-1)}, \widehat{\sigma}_{\beta}^{2}\right)$ and compute

$$
\begin{aligned}
& \zeta\left(\left(\alpha^{(i-1)}, \beta^{(i-1)}\right),\left(\alpha^{*}, \beta^{*}\right)\right) \\
= & \min \left(1, \frac{\pi\left(\alpha^{*}, \beta^{*} \mid \text { data }\right) \pi\left(\alpha^{(i-1)} \mid b\right)}{\pi\left(\alpha^{(i-1)}, \beta^{(i-1)} \mid \text { data }\right) \pi\left(\alpha^{*} \mid b\right)}\right)
\end{aligned}
$$

- Set $\left(\alpha^{(i)}, \beta^{(i)}\right)=\left(\alpha^{*}, \beta^{*}\right)$ with probability
$\zeta\left(\left(\alpha^{(i-1)}, \beta^{(i-1)}\right),\left(\alpha^{*}, \beta^{*}\right)\right)$, otherwise set
$\left(\alpha^{(i)}, \beta^{(i)}\right)=\left(\alpha^{(i-1)}, \beta^{(i-1)}\right)$.

Figure: Plots of $\frac{1}{k} \sum_{i=1}^{k} \alpha^{(i)}$ (left) and $\frac{1}{k} \sum_{i=1}^{k} \beta^{(i)}$ (right).

Figure: Histogram estimates of $p(\alpha \mid$ data) (left) and $p(\beta \mid d a t a)$ (right).

Probit Regression

- We consider the following example: we take 4 measurements from 100 genuine Swiss banknotes and 100 counterfeit ones.

Probit Regression

- We consider the following example: we take 4 measurements from 100 genuine Swiss banknotes and 100 counterfeit ones.
- The response variable y is 0 for genuine and 1 for counterfeit and the explanatory variables are

Probit Regression

- We consider the following example: we take 4 measurements from 100 genuine Swiss banknotes and 100 counterfeit ones.
- The response variable y is 0 for genuine and 1 for counterfeit and the explanatory variables are
- x^{1} the length,

Probit Regression

- We consider the following example: we take 4 measurements from 100 genuine Swiss banknotes and 100 counterfeit ones.
- The response variable y is 0 for genuine and 1 for counterfeit and the explanatory variables are
- x^{1} the length,
- x^{2} : the width of the left edge

Probit Regression

- We consider the following example: we take 4 measurements from 100 genuine Swiss banknotes and 100 counterfeit ones.
- The response variable y is 0 for genuine and 1 for counterfeit and the explanatory variables are
- x^{1} the length,
- x^{2} : the width of the left edge
- x^{3} : the width of the right edge

Probit Regression

- We consider the following example: we take 4 measurements from 100 genuine Swiss banknotes and 100 counterfeit ones.
- The response variable y is 0 for genuine and 1 for counterfeit and the explanatory variables are
- x^{1} the length,
- x^{2} : the width of the left edge
- x^{3} : the width of the right edge
- x^{4} : the bottom margin witdth

Figure: Left: Plot of the status indicator versus the bottom margin width. Right: Boxplots of the bottom margin width for both counterfeit status.

- Instead of selecting a logistic link, we select a probit one here

$$
\operatorname{Pr}(Y=1 \mid x)=\Phi\left(x^{1} \beta_{1}+\ldots+x^{4} \beta_{4}\right)
$$

where

$$
\Phi(u)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{u} \exp \left(-\frac{v^{2}}{2}\right) d v
$$

- Instead of selecting a logistic link, we select a probit one here

$$
\operatorname{Pr}(Y=1 \mid x)=\Phi\left(x^{1} \beta_{1}+\ldots+x^{4} \beta_{4}\right)
$$

where

$$
\Phi(u)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{u} \exp \left(-\frac{v^{2}}{2}\right) d v
$$

- For n data, the likelihood is then given by

$$
f\left(y_{1: n} \mid \beta, x_{1: n}\right)=\prod_{i=1}^{n} \Phi\left(x_{i}^{T} \beta\right)^{y_{i}}\left(1-\Phi\left(x_{i}^{T} \beta\right)\right)^{1-y_{i}}
$$

- We assume a vague prior where $\beta \sim \mathcal{N}\left(0,100 I_{4}\right)$ and we use a simple random walk sampler with $\widehat{\Sigma}$ the covariance matrix associated to the MLE (estimated using simple deterministic method).
- We assume a vague prior where $\beta \sim \mathcal{N}\left(0,100 I_{4}\right)$ and we use a simple random walk sampler with $\widehat{\Sigma}$ the covariance matrix associated to the MLE (estimated using simple deterministic method).
- The algorithm is thus simply given at iteration i by
- We assume a vague prior where $\beta \sim \mathcal{N}\left(0,100 I_{4}\right)$ and we use a simple random walk sampler with $\widehat{\Sigma}$ the covariance matrix associated to the MLE (estimated using simple deterministic method).
- The algorithm is thus simply given at iteration i by
- Sample $\beta^{*} \sim \mathcal{N}\left(\beta^{(i-1)}, \tau^{2} \widehat{\Sigma}\right)$ and compute

$$
\alpha\left(\beta^{(i-1)}, \beta^{*}\right)=\min \left(1, \frac{\pi\left(\beta^{*} \mid y_{1: n}, x_{1: n}\right)}{\pi\left(\beta^{(i-1)} \mid y_{1: n}, x_{1: n}\right)}\right)
$$

- We assume a vague prior where $\beta \sim \mathcal{N}\left(0,100 I_{4}\right)$ and we use a simple random walk sampler with $\widehat{\Sigma}$ the covariance matrix associated to the MLE (estimated using simple deterministic method).
- The algorithm is thus simply given at iteration i by
- Sample $\beta^{*} \sim \mathcal{N}\left(\beta^{(i-1)}, \tau^{2} \widehat{\Sigma}\right)$ and compute

$$
\alpha\left(\beta^{(i-1)}, \beta^{*}\right)=\min \left(1, \frac{\pi\left(\beta^{*} \mid y_{1: n}, x_{1: n}\right)}{\pi\left(\beta^{(i-1)} \mid y_{1: n}, x_{1: n}\right)}\right)
$$

- Set $\beta^{(i)}=\beta^{*}$ with probability $\alpha\left(\beta^{(i-1)}, \beta^{*}\right)$ and $\beta^{(i)}=\beta^{(i-1)}$ otherwise.
- We assume a vague prior where $\beta \sim \mathcal{N}\left(0,100 I_{4}\right)$ and we use a simple random walk sampler with $\widehat{\Sigma}$ the covariance matrix associated to the MLE (estimated using simple deterministic method).
- The algorithm is thus simply given at iteration i by
- Sample $\beta^{*} \sim \mathcal{N}\left(\beta^{(i-1)}, \tau^{2} \widehat{\Sigma}\right)$ and compute

$$
\alpha\left(\beta^{(i-1)}, \beta^{*}\right)=\min \left(1, \frac{\pi\left(\beta^{*} \mid y_{1: n}, x_{1: n}\right)}{\pi\left(\beta^{(i-1)} \mid y_{1: n}, x_{1: n}\right)}\right)
$$

- Set $\beta^{(i)}=\beta^{*}$ with probability $\alpha\left(\beta^{(i-1)}, \beta^{*}\right)$ and $\beta^{(i)}=\beta^{(i-1)}$ otherwise.
- Best results obtained with $\tau^{2}=1$.

Figure: Traces (left), Histograms (middle) and Autocorrelations (right) for $\left(\beta_{1}^{(i)}, \ldots, \beta_{4}^{(i)}\right)$.

Autocorrelation

- One way to monitor the performance of the algorithm of the chain $\left\{X^{(i)}\right\}$ consists of displaying $\rho_{k}=\operatorname{cov}\left[X^{(i)}, X^{(i+k)}\right] / \operatorname{var}\left(X^{(i)}\right)$ which can be estimated from the chain, at least for small values of k.

Autocorrelation

- One way to monitor the performance of the algorithm of the chain $\left\{X^{(i)}\right\}$ consists of displaying $\rho_{k}=\operatorname{cov}\left[X^{(i)}, X^{(i+k)}\right] / \operatorname{var}\left(X^{(i)}\right)$ which can be estimated from the chain, at least for small values of k.
- Sometimes one uses an effective sample size measure

$$
N^{\mathrm{ess}}=N\left(1+2 \sum_{k=1}^{N_{0}} \widehat{\rho}_{k}\right)^{-1 / 2}
$$

This represents approximately the sample size of an equivalent i.i.d. samples.

Autocorrelation

- One way to monitor the performance of the algorithm of the chain $\left\{X^{(i)}\right\}$ consists of displaying $\rho_{k}=\operatorname{cov}\left[X^{(i)}, X^{(i+k)}\right] / \operatorname{var}\left(X^{(i)}\right)$ which can be estimated from the chain, at least for small values of k.
- Sometimes one uses an effective sample size measure

$$
N^{\mathrm{ess}}=N\left(1+2 \sum_{k=1}^{N_{0}} \widehat{\rho}_{k}\right)^{-1 / 2}
$$

This represents approximately the sample size of an equivalent i.i.d. samples.

- One should be very careful with such measures which can be very misleading.
- We found for $\mathbb{E}\left(\beta \mid y_{1: n}, x_{1: n}\right)=(-1.22,0.95,0.96,1.15)$ so a simple plug-in estimate of the predictive probability of a counterfeit bill is

$$
\widehat{p}=\Phi\left(-1.22 x^{1}+0.95 x^{2}+0.96 x^{3}+1.15 x^{4}\right)
$$

For $x=(214.9,130.1,129.9,9.5)$, we obtain $\widehat{p}=0.59$.

- We found for $\mathbb{E}\left(\beta \mid y_{1: n}, x_{1: n}\right)=(-1.22,0.95,0.96,1.15)$ so a simple plug-in estimate of the predictive probability of a counterfeit bill is

$$
\widehat{p}=\Phi\left(-1.22 x^{1}+0.95 x^{2}+0.96 x^{3}+1.15 x^{4}\right)
$$

For $x=(214.9,130.1,129.9,9.5)$, we obtain $\widehat{p}=0.59$.

- A better estimate is obtained by

$$
\int \Phi\left(\beta_{1} x^{1}+\beta_{2} x^{2}+\beta_{3} x^{3}+\beta_{4} x^{4}\right) \pi\left(\beta \mid y_{1: n}, x_{1: n}\right) d \beta
$$

Auxiliary Variables for Probit Regression

- It is impossible to use Gibbs to sample directly from $\pi\left(\beta \mid y_{1: n}, x_{1: n}\right)$.

Auxiliary Variables for Probit Regression

- It is impossible to use Gibbs to sample directly from $\pi\left(\beta \mid y_{1: n}, x_{1: n}\right)$.
- Introduce the following unobserved latent variables

$$
\begin{aligned}
& Z_{i} \sim \mathcal{N}\left(x_{i}^{\top} \beta, 1\right) \\
& Y_{i}= \begin{cases}1 & \text { if } Z_{i}>0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Auxiliary Variables for Probit Regression

- It is impossible to use Gibbs to sample directly from $\pi\left(\beta \mid y_{1: n}, x_{1: n}\right)$.
- Introduce the following unobserved latent variables

$$
\begin{aligned}
& Z_{i} \sim \mathcal{N}\left(x_{i}^{\top} \beta, 1\right) \\
& Y_{i}= \begin{cases}1 & \text { if } Z_{i}>0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- We have now define a joint distribution

$$
f\left(y_{i}, z_{i} \mid \beta, x_{i}\right)=f\left(y_{i} \mid z_{i}\right) f\left(z_{i} \mid \beta, x_{i}\right) .
$$

- Now we can check that

$$
\begin{aligned}
f\left(y_{i}=1 \mid x_{i}, \beta\right) & =\int f\left(y_{i}, z_{i} \mid \beta, x_{i}\right) d z_{i} \\
& =\int_{0}^{\infty} f\left(z_{i} \mid \beta, x_{i}\right) d z_{i}=\Phi\left(x_{i}^{\top} \beta\right) .
\end{aligned}
$$

\Rightarrow We haven't changed the model!

- Now we can check that

$$
\begin{aligned}
f\left(y_{i}=1 \mid x_{i}, \beta\right) & =\int f\left(y_{i}, z_{i} \mid \beta, x_{i}\right) d z_{i} \\
& =\int_{0}^{\infty} f\left(z_{i} \mid \beta, x_{i}\right) d z_{i}=\Phi\left(x_{i}^{\top} \beta\right) .
\end{aligned}
$$

\Rightarrow We haven't changed the model!

- We are now going to sample from $\pi\left(\beta, z_{1: n} \mid x_{1: n}, y_{1: n}\right)$ instead of $\pi\left(\beta \mid x_{1: n}, y_{1: n}\right)$ because the full conditional distributions are simple

$$
\begin{aligned}
& \pi\left(\beta \mid y_{1: n}, x_{1: n}, z_{1: n}\right)=\pi\left(\beta \mid x_{1: n}, z_{1: n}\right) \text { (standard Gaussian! } \\
& \pi\left(z_{1: n} \mid y_{1: n}, x_{1: n}, \beta\right)=\prod_{i=1}^{n} \pi\left(z_{k} \mid y_{k}, x_{k}, \beta\right)
\end{aligned}
$$

where

$$
z_{k} \mid y_{k}, x_{k}, \beta \sim \begin{cases}\mathcal{N}_{+}\left(x_{k}^{\top} \beta, 1\right) & \text { if } y_{k}=1 \\ \mathcal{N}_{-}\left(x_{k}^{\top} \beta, 1\right) & \text { if } y_{k}=0 .\end{cases}
$$

Figure: Traces (left), Histograms (middle) and Autocorrelations (right) for $\left(\beta_{1}^{(i)}, \ldots, \beta_{4}^{(i)}\right)$.

- The results obtained through Gibbs are very similar to MH.
- The results obtained through Gibbs are very similar to MH.
- We can also adopt an Zellner's type prior and obtain very similar results.
- The results obtained through Gibbs are very similar to MH.
- We can also adopt an Zellner's type prior and obtain very similar results.
- Very similar were also obtained using a logistic fonction using the MH (Gibbs is feasible but more difficult).

Warning

- Although the introduction of latent variables can be attractive, it can be also very inefficient.

Warning

- Although the introduction of latent variables can be attractive, it can be also very inefficient.
- It is not because you can use the Gibbs sampler that everything works well!

Warning

- Although the introduction of latent variables can be attractive, it can be also very inefficient.
- It is not because you can use the Gibbs sampler that everything works well!
- Consider the following simple generalization of the previous model

$$
Z_{i} \sim \mathcal{N}\left(x_{i} \beta, \sigma^{2}\right), \quad Y_{i}= \begin{cases}1 & \text { if } Z_{i}>0 \\ 0 & \text { otherwise }\end{cases}
$$

Warning

- Although the introduction of latent variables can be attractive, it can be also very inefficient.
- It is not because you can use the Gibbs sampler that everything works well!
- Consider the following simple generalization of the previous model

$$
Z_{i} \sim \mathcal{N}\left(x_{i} \beta, \sigma^{2}\right), \quad Y_{i}= \begin{cases}1 & \text { if } Z_{i}>0 \\ 0 & \text { otherwise }\end{cases}
$$

- We complete the model by $\sigma^{2} \sim \mathcal{I G}(1.5,1.5)$ and $\beta \mid \sigma^{2} \sim \mathcal{N}(0,100)$.
- Not only the data Z_{i} and $\left(\beta, \sigma^{2}\right)$ are very correlated but we have

$$
\operatorname{Pr}\left(Y_{i}=1 \mid x_{i}, \beta, \sigma^{2}\right)=\Phi\left(\frac{x_{i} \beta}{\sigma}\right)
$$

- Not only the data Z_{i} and $\left(\beta, \sigma^{2}\right)$ are very correlated but we have

$$
\operatorname{Pr}\left(Y_{i}=1 \mid x_{i}, \beta, \sigma^{2}\right)=\Phi\left(\frac{x_{i} \beta}{\sigma}\right)
$$

- The likelihood only depends on β / σ and the parameters β and σ are not identifiable.
- Not only the data Z_{i} and $\left(\beta, \sigma^{2}\right)$ are very correlated but we have

$$
\operatorname{Pr}\left(Y_{i}=1 \mid x_{i}, \beta, \sigma^{2}\right)=\Phi\left(\frac{x_{i} \beta}{\sigma}\right)
$$

- The likelihood only depends on β / σ and the parameters β and σ are not identifiable.
- One way to improve the mixing consists of using an additional MH step that proposes to randomly rescale the current value.
- Not only the data Z_{i} and $\left(\beta, \sigma^{2}\right)$ are very correlated but we have

$$
\operatorname{Pr}\left(Y_{i}=1 \mid x_{i}, \beta, \sigma^{2}\right)=\Phi\left(\frac{x_{i} \beta}{\sigma}\right)
$$

- The likelihood only depends on β / σ and the parameters β and σ are not identifiable.
- One way to improve the mixing consists of using an additional MH step that proposes to randomly rescale the current value.
- We use a proposal distribution such that

$$
\left(\beta^{\prime}, \sigma^{\prime}\right)=\lambda(\beta, \sigma) \text { with } \lambda \sim \mathcal{E} \times p(1)
$$

that proposes to randomly rescale the current value.

Hidden Markov Model

- Consider the following hidden Markov model

$$
\begin{aligned}
X_{k} \mid\left(X_{k-1}=x_{k-1}\right) & \sim f_{\theta}\left(\cdot \mid x_{k-1}\right), X_{1} \sim \mu \\
Y_{n} \mid\left(X_{k}=x_{k}\right) & \sim g_{\theta}\left(\cdot \mid x_{k}\right),
\end{aligned}
$$

and we set a prior $\pi(\theta)$ on the unknown hyperparameters θ.

Hidden Markov Model

- Consider the following hidden Markov model

$$
\begin{aligned}
X_{k} \mid\left(X_{k-1}=x_{k-1}\right) & \sim f_{\theta}\left(\cdot \mid x_{k-1}\right), \quad X_{1} \sim \mu \\
Y_{n} \mid\left(X_{k}=x_{k}\right) & \sim g_{\theta}\left(\cdot \mid x_{k}\right),
\end{aligned}
$$

and we set a prior $\pi(\theta)$ on the unknown hyperparameters θ.

- Given n data, we are interested in the joint posterior

$$
\pi\left(\theta, x_{1: n} \mid y_{1: n}\right)
$$

Hidden Markov Model

- Consider the following hidden Markov model

$$
\begin{aligned}
X_{k} \mid\left(X_{k-1}=x_{k-1}\right) & \sim f_{\theta}\left(\cdot \mid x_{k-1}\right), \quad X_{1} \sim \mu \\
Y_{n} \mid\left(X_{k}=x_{k}\right) & \sim g_{\theta}\left(\cdot \mid x_{k}\right),
\end{aligned}
$$

and we set a prior $\pi(\theta)$ on the unknown hyperparameters θ.

- Given n data, we are interested in the joint posterior

$$
\pi\left(\theta, x_{1: n} \mid y_{1: n}\right)
$$

- There is no closed-form expression for this joint distribution even if the model is linear Gaussian or for finite state-space model.
- In previous lectures, we propose sampling from $\pi\left(\theta, x_{1: n} \mid y_{1: n}\right)$ using the Gibbs sampler where the variables are updated according to

$$
x_{k} \sim \pi\left(x_{k} \mid y_{1: n}, x_{-k}, \theta\right)
$$

- In previous lectures, we propose sampling from $\pi\left(\theta, x_{1: n} \mid y_{1: n}\right)$ using the Gibbs sampler where the variables are updated according to

$$
x_{k} \sim \pi\left(x_{k} \mid y_{1: n}, x_{-k}, \theta\right)
$$

- For $2<k<n$, we have

$$
\begin{aligned}
\pi\left(x_{k} \mid y_{1: n}, x_{-k}, \theta\right) & \propto \pi\left(x_{1: n}, y_{1: n}, \theta\right) \\
& \propto \underbrace{\pi(\theta) \mu\left(x_{1}\right) \prod_{i=2}^{n} f_{\theta}\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{n} g_{\theta}\left(y_{i} \mid x_{i}\right)}_{\text {prior }} \\
& \propto f_{\theta}\left(x_{k} \mid x_{k-1}\right) f_{\theta}\left(x_{k+1} \mid x_{k}\right) g_{\theta}\left(y_{k} \mid x_{k}\right)
\end{aligned}
$$

and $\theta \sim \pi\left(\theta \mid y_{1: n}, x_{1: n}\right)$ (or by subblocks).

- It is often possible to implement the Gibbs sampler even if this can be expensive; e.g. if you use Accept/Reject to sample from $\pi\left(x_{k} \mid y_{1: n}, x_{-k}, \theta\right)$ using the proposal $\pi\left(x_{k} \mid x_{-k}, \theta\right) \propto f_{\theta}\left(x_{k} \mid x_{k-1}\right) f_{\theta}\left(x_{k+1} \mid x_{k}\right)$.
- It is often possible to implement the Gibbs sampler even if this can be expensive; e.g. if you use Accept/Reject to sample from $\pi\left(x_{k} \mid y_{1: n}, x_{-k}, \theta\right)$ using the proposal $\pi\left(x_{k} \mid x_{-k}, \theta\right) \propto f_{\theta}\left(x_{k} \mid x_{k-1}\right) f_{\theta}\left(x_{k+1} \mid x_{k}\right)$.
- Even if it is possible to implement the Gibbs sampler, one can expect a very slow convergence of the algorithm is successive variables are highly correlated.
- It is often possible to implement the Gibbs sampler even if this can be expensive; e.g. if you use Accept/Reject to sample from $\pi\left(x_{k} \mid y_{1: n}, x_{-k}, \theta\right)$ using the proposal $\pi\left(x_{k} \mid x_{-k}, \theta\right) \propto f_{\theta}\left(x_{k} \mid x_{k-1}\right) f_{\theta}\left(x_{k+1} \mid x_{k}\right)$.
- Even if it is possible to implement the Gibbs sampler, one can expect a very slow convergence of the algorithm is successive variables are highly correlated.
- Indeed, as you update x_{k} with x_{k-1} and x_{k+1} being fixed, then you cannot move much into the space.
- Consider the very simple case where $\theta=\left(\sigma_{v}^{2}, \sigma_{w}^{2}\right)$

$$
\begin{aligned}
& X_{k}=X_{k-1}+V_{k} \text { where } V_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{v}^{2}\right), \\
& Y_{k}=X_{k}+W_{k} \text { where } W_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{w}^{2}\right)
\end{aligned}
$$

then we have

$$
\begin{aligned}
\pi\left(x_{k} \mid x_{-k}, \theta\right) & \propto f_{\theta}\left(x_{k} \mid x_{k-1}\right) f_{\theta}\left(x_{k+1} \mid x_{k}\right) \\
& =\mathcal{N}\left(x_{k} ; \frac{x_{k-1}+x_{k+1}}{2}, \frac{\sigma_{v}^{2}}{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \pi\left(x_{k} \mid y_{1: n}, x_{-k}, \theta\right) \\
\propto & \pi\left(x_{k} \mid x_{-k}, \theta\right) g_{\theta}\left(y_{k} \mid x_{k}\right) \\
= & \mathcal{N}\left(x_{k} ; \frac{\sigma_{v}^{2} \sigma_{w}^{2}}{\sigma_{v}^{2}+2 \sigma_{w}^{2}}\left(\frac{x_{k-1}+x_{k+1}}{\sigma_{v}^{2}}+\frac{y_{k}}{\sigma_{w}^{2}}\right), \frac{\sigma_{v}^{2} \sigma_{w}^{2}}{\sigma_{v}^{2}+2 \sigma_{w}^{2}}\right)
\end{aligned}
$$

- Assume for the time being that instead of sampling from $\pi\left(x_{k} \mid y_{1: n}, x_{-k}, \theta\right)$ directly, we use rejection sampling with $\pi\left(x_{k} \mid x_{-k}, \theta\right)$ as a proposal distribution.
- Assume for the time being that instead of sampling from $\pi\left(x_{k} \mid y_{1: n}, x_{-k}, \theta\right)$ directly, we use rejection sampling with $\pi\left(x_{k} \mid x_{-k}, \theta\right)$ as a proposal distribution.
- In this case we have to bound

$$
g_{\theta}\left(y_{k} \mid x_{k}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{w}} \exp \left(-\frac{\left(y_{k}-x_{k}\right)^{2}}{2 \sigma_{w}^{2}}\right) \leq \frac{1}{\sqrt{2 \pi} \sigma_{w}}
$$

- Assume for the time being that instead of sampling from $\pi\left(x_{k} \mid y_{1: n}, x_{-k}, \theta\right)$ directly, we use rejection sampling with $\pi\left(x_{k} \mid x_{-k}, \theta\right)$ as a proposal distribution.
- In this case we have to bound

$$
g_{\theta}\left(y_{k} \mid x_{k}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{w}} \exp \left(-\frac{\left(y_{k}-x_{k}\right)^{2}}{2 \sigma_{w}^{2}}\right) \leq \frac{1}{\sqrt{2 \pi} \sigma_{w}}
$$

- We accept each proposal $X^{*} \sim \pi\left(x_{k} \mid x_{-k}, \theta\right)$ with probability $\exp \left(-\frac{\left(y_{k}-x^{*}\right)^{2}}{2 \sigma_{w}^{2}}\right)$, so the (unconditional) acceptance probability is given by

$$
\begin{aligned}
& \int \pi\left(x_{k} \mid x_{-k}, \theta\right) \exp \left(-\frac{\left(y_{k}-x_{k}\right)^{2}}{2 \sigma_{w}^{2}}\right) d x_{k} \\
= & \frac{\sigma_{w} \exp \left(-\frac{1}{2}\left(y_{k}^{2} / \sigma_{w}^{2}-\left(x_{k-1}+x_{k+1}\right)^{2} / \sigma_{v}^{2}\right)\right)}{\sqrt{\sigma_{v}^{2}+2 \sigma_{w}^{2}}} .
\end{aligned}
$$

- To improve the algorithm, we would like to be able to sample a whole block of variables simultaneously; i.e. being able to sample for $1<k<k+L<n$ from

$$
\begin{aligned}
\pi\left(x_{k: k+L} \mid y_{1: n}, x_{-(k: k+L)}, \theta\right) & =\pi\left(x_{k: k+L} \mid y_{k: k+L}, x_{k-1}, x_{k+L+1}, \theta\right) \\
& \propto \prod_{i=k}^{k+L+1} f_{\theta}\left(x_{i} \mid x_{i-1}\right) \prod_{i=k}^{k+L} g_{\theta}\left(y_{i} \mid x_{i}\right)
\end{aligned}
$$

- To improve the algorithm, we would like to be able to sample a whole block of variables simultaneously; i.e. being able to sample for $1<k<k+L<n$ from

$$
\begin{aligned}
\pi\left(x_{k: k+L} \mid y_{1: n}, x_{-(k: k+L)}, \theta\right) & =\pi\left(x_{k: k+L} \mid y_{k: k+L}, x_{k-1}, x_{k+L+1}, \theta\right) \\
& \propto \prod_{i=k}^{k+L+1} f_{\theta}\left(x_{i} \mid x_{i-1}\right) \prod_{i=k}^{k+L} g_{\theta}\left(y_{i} \mid x_{i}\right)
\end{aligned}
$$

- In this case, it is typically impossible to sample from
$\pi\left(x_{k: k+L} \mid y_{1: n}, x_{-(k: k+L)}, \theta\right)$ exactly as L is large, say 5 or 10 .
- To improve the algorithm, we would like to be able to sample a whole block of variables simultaneously; i.e. being able to sample for $1<k<k+L<n$ from

$$
\begin{aligned}
\pi\left(x_{k: k+L} \mid y_{1: n}, x_{-(k: k+L)}, \theta\right) & =\pi\left(x_{k: k+L} \mid y_{k: k+L}, x_{k-1}, x_{k+L+1}, \theta\right) \\
& \propto \prod_{i=k}^{k+L+1} f_{\theta}\left(x_{i} \mid x_{i-1}\right) \prod_{i=k}^{k+L} g_{\theta}\left(y_{i} \mid x_{i}\right)
\end{aligned}
$$

- In this case, it is typically impossible to sample from $\pi\left(x_{k: k+L} \mid y_{1: n}, x_{-(k: k+L)}, \theta\right)$ exactly as L is large, say 5 or 10 .
- We are propose to use a MH step of invariant distribution $\pi\left(x_{k: k+L} \mid y_{1: n}, x_{-(k: k+L)}, \theta\right)$ instead, hence we need to build a proposal distribution $q\left(\left(x_{1: n}, \theta\right), x_{k: k+L}^{\prime}\right)$.
- We first propose to use the conditional prior

$$
\begin{aligned}
q\left(\left(x_{1: n}, \theta\right), x_{k: k+L}^{\prime}\right) & =\pi\left(x_{k: k+L} \mid x_{-(k: k+L)}, \theta\right) \\
& =\pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+L+1}, \theta\right) \\
& \propto \prod_{i=k}^{k+L+1} f_{\theta}\left(x_{i} \mid x_{i-1}\right) .
\end{aligned}
$$

- We first propose to use the conditional prior

$$
\begin{aligned}
q\left(\left(x_{1: n}, \theta\right), x_{k: k+L}^{\prime}\right) & =\pi\left(x_{k: k+L} \mid x_{-(k: k+L)}, \theta\right) \\
& =\pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+L+1}, \theta\right) \\
& \propto \prod_{i=k}^{k+L+1} f_{\theta}\left(x_{i} \mid x_{i-1}\right) .
\end{aligned}
$$

- In this case, the candidate $X_{k: k+L}^{\prime} \sim \pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+L+1}, \theta\right)$ is accepted with probability

$$
\begin{aligned}
& \min \left(1, \frac{\pi\left(x_{k: k+L}^{\prime} \mid y_{\left.k: k+L, x_{k-1}, x_{k+L+1}, \theta\right) \pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+L+1}, \theta\right)}^{\pi\left(x_{k: k+L} L y_{\left.k: k+L L, x_{k-1}, x_{k+L+1}, \theta\right) \pi\left(x_{k: k+L}^{\prime} \mid x_{k-1}, x_{k+L+1}, \theta\right)}^{\prime}\right.}\right)}{=\min \left(1, \frac{\prod_{i k k}^{k+L} g_{\theta}\left(y_{i} \mid x_{i}^{\prime}\right)}{\prod_{i=k}^{k+L} g_{\theta}\left(y_{i} \mid x_{i}\right)}\right)}\right.
\end{aligned}
$$

- We first propose to use the conditional prior

$$
\begin{aligned}
q\left(\left(x_{1: n}, \theta\right), x_{k: k+L}^{\prime}\right) & =\pi\left(x_{k: k+L} \mid x_{-(k: k+L)}, \theta\right) \\
& =\pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+L+1}, \theta\right) \\
& \propto \prod_{i=k}^{k+L+1} f_{\theta}\left(x_{i} \mid x_{i-1}\right)
\end{aligned}
$$

- In this case, the candidate $X_{k: k+L}^{\prime} \sim \pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+L+1}, \theta\right)$ is accepted with probability

$$
\begin{aligned}
& \min \left(1, \frac{\pi\left(x_{: k+k}^{\prime} \mid y_{\left.k: k+L, x_{k-1}, x_{k+L+1}, \theta\right) \pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+L+1}, \theta\right)}^{\pi\left(x_{k: k+L} \mid y_{\left.k: k+L, x_{k-1}, x_{k+L+1}, \theta\right) \pi\left(x_{k: k+L}^{\prime} \mid x_{k-1}, x_{k+L+1}, \theta\right)}^{\prime}\right.}\right)}{=\min \left(1, \frac{\prod_{i=k}^{k+L} g_{\theta}\left(y_{i} \mid x_{i}^{\prime}\right)}{\prod_{i=k}^{k+L} g_{\theta}\left(y_{i} \mid x_{i}\right)}\right)}\right.
\end{aligned}
$$

- Simple but one cannot expect it to be too efficient when the observations are very informative compared to the prior.
- Consider the case where

$$
X_{k}=A X_{k-1}+B V_{k}, V_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, I)
$$

- Consider the case where

$$
X_{k}=A X_{k-1}+B V_{k}, V_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, I)
$$

- Particular cases include

$$
\begin{aligned}
& X_{k}=X_{k-1}+\sigma V_{k}, \text { where } V_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1) \\
& X_{k}=\binom{\alpha_{k}}{\alpha_{k-1}}=\left(\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right) X_{k-1}+\binom{\sigma}{0} V_{k}, V_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
\end{aligned}
$$

- In this case, it is simple to see that $\pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+1}, \theta\right)$ is a Gaussian distribution.
- In this case, it is simple to see that $\pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+1}, \theta\right)$ is a Gaussian distribution.
- In (Knorr-Held, 1999), one samples from this distribution by computing directly the parameters of this joint distribution: complexity $O\left(L^{2}\right)$.
- In this case, it is simple to see that $\pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+1}, \theta\right)$ is a Gaussian distribution.
- In (Knorr-Held, 1999), one samples from this distribution by computing directly the parameters of this joint distribution: complexity $O\left(L^{2}\right)$.
- We can derive a simpler method of complexity $O(L)$ based on the following decomposition (omitting θ in the notation)

$$
\begin{aligned}
\pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+L+1}\right) & =\prod_{i=k}^{k+L} \pi\left(x_{i} \mid x_{k-1}, x_{k+L+1}, x_{i+1}\right) \\
& =\prod_{i=k}^{k+L} \pi\left(x_{i} \mid x_{k-1}, x_{i+1}\right)
\end{aligned}
$$

- Moreover it is easy to establish the expression for $\pi\left(x_{i} \mid x_{k-1}, x_{i+1}\right)$

$$
\pi\left(x_{i} \mid x_{k-1}, x_{i+1}\right) \propto \pi\left(x_{i} \mid x_{k-1}\right) f\left(x_{i+1} \mid x_{i}\right)
$$

as

$$
\pi\left(x_{i} \mid x_{k-1}\right)=\int \pi\left(x_{k: i} \mid x_{k-1}\right) d x_{k: i-1}=\mathcal{N}\left(x_{i} ; \mu_{i}\left(x_{k-1}\right), \Sigma_{i}\right)
$$

with, for $X_{n}=A X_{n-1}+B V_{n}, \mu_{k-1}\left(x_{k-1}\right)=x_{k-1}, \Sigma_{k-1}=0$ and for $i \geq k$

$$
\begin{aligned}
\mu_{i}\left(x_{k-1}\right) & =A \mu_{i-1}\left(x_{k-1}\right) \\
\Sigma_{i} & =A \Sigma_{i-1} A^{\top}+\Sigma \text { with } \Sigma=B B^{\top} .
\end{aligned}
$$

- Moreover it is easy to establish the expression for $\pi\left(x_{i} \mid x_{k-1}, x_{i+1}\right)$

$$
\pi\left(x_{i} \mid x_{k-1}, x_{i+1}\right) \propto \pi\left(x_{i} \mid x_{k-1}\right) f\left(x_{i+1} \mid x_{i}\right)
$$

as

$$
\pi\left(x_{i} \mid x_{k-1}\right)=\int \pi\left(x_{k: i} \mid x_{k-1}\right) d x_{k: i-1}=\mathcal{N}\left(x_{i} ; \mu_{i}\left(x_{k-1}\right), \Sigma_{i}\right)
$$

with, for $X_{n}=A X_{n-1}+B V_{n}, \mu_{k-1}\left(x_{k-1}\right)=x_{k-1}, \Sigma_{k-1}=0$ and for $i \geq k$

$$
\begin{aligned}
\mu_{i}\left(x_{k-1}\right) & =A \mu_{i-1}\left(x_{k-1}\right) \\
\Sigma_{i} & =A \Sigma_{i-1} A^{\top}+\Sigma \text { with } \Sigma=B B^{\top} .
\end{aligned}
$$

- To obtain $\pi\left(x_{i} \mid x_{k-1}, x_{i+1}\right)$, we combine the prior $\pi\left(x_{i} \mid x_{k-1}\right)$ with the "likelihood" $f\left(x_{i+1} \mid x_{i}\right)$.
- We have $\pi\left(x_{i} \mid x_{k-1}\right)=\mathcal{N}\left(x_{i} ; \mu_{i}\left(x_{k-1}\right), \Sigma_{i}\right)$ and $f\left(x_{i+1} \mid x_{i}\right)=\mathcal{N}\left(x_{i+1} ; A x_{i}, \Sigma\right)$ then

$$
\pi\left(x_{i} \mid x_{k-1}, x_{i+1}\right)=\mathcal{N}\left(x_{i} ; \mu_{i}\left(x_{k-1}, x_{i+1}\right), \widetilde{\Sigma}_{i}\right)
$$

where

$$
\begin{aligned}
\widetilde{\Sigma}_{i} & =\left(\Sigma_{i}^{-1}+A^{\top} \Sigma^{-1} A\right)^{-1} \\
\mu_{i}\left(x_{k-1}, x_{i+1}\right) & =\widetilde{\Sigma}_{i}\left(A^{\top} \Sigma^{-1} x_{i+1}+\Sigma_{i}^{-1} \mu_{i}\left(x_{k-1}\right)\right) .
\end{aligned}
$$

- We have $\pi\left(x_{i} \mid x_{k-1}\right)=\mathcal{N}\left(x_{i} ; \mu_{i}\left(x_{k-1}\right), \Sigma_{i}\right)$ and $f\left(x_{i+1} \mid x_{i}\right)=\mathcal{N}\left(x_{i+1} ; A x_{i}, \Sigma\right)$ then

$$
\pi\left(x_{i} \mid x_{k-1}, x_{i+1}\right)=\mathcal{N}\left(x_{i} ; \mu_{i}\left(x_{k-1}, x_{i+1}\right), \widetilde{\Sigma}_{i}\right)
$$

where

$$
\begin{aligned}
\widetilde{\Sigma}_{i} & =\left(\Sigma_{i}^{-1}+A^{\top} \Sigma^{-1} A\right)^{-1} \\
\mu_{i}\left(x_{k-1}, x_{i+1}\right) & =\widetilde{\Sigma}_{i}\left(A^{\top} \Sigma^{-1} x_{i+1}+\Sigma_{i}^{-1} \mu_{i}\left(x_{k-1}\right)\right) .
\end{aligned}
$$

- To sample a realization of $\pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+L+1}\right)$, first compute $\mu_{i}\left(x_{k-1}\right), \Sigma_{i}$ for $i=k, \ldots, k+L$ using a forward recursion. Then sample backward $X_{k+L} \sim \pi\left(\cdot \mid x_{k-1}, x_{k+L+1}\right)$, $X_{k+L-1} \sim \pi\left(\cdot \mid x_{k-1}, X_{k+L}\right), \ldots, X_{k} \sim \pi\left(\cdot \mid x_{k-1}, X_{k+1}\right)$.

Figure: Number of occurences of rainfall in Tokyo for each day during 1983-1984 reproduced as relative frequencies between $0,0.5$ and $1(n=366)$

- Consider the following model

$$
X_{k}=\binom{\alpha_{k}}{\alpha_{k-1}}=\left(\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right) X_{k-1}+\binom{\sigma}{0} V_{k}, V_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

and

$$
Y_{k} \left\lvert\, X_{k} \sim \begin{cases}B\left(2, \pi_{k}\right) & k \neq 60 \\ B\left(1, \pi_{k}\right) & k=60(\text { February 29 })\end{cases}\right.
$$

where

$$
\pi_{k}=\frac{\exp \left(\alpha_{k}\right)}{1+\exp \left(\alpha_{k}\right)}
$$

- Consider the following model

$$
X_{k}=\binom{\alpha_{k}}{\alpha_{k-1}}=\left(\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right) X_{k-1}+\binom{\sigma}{0} V_{k}, V_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

and

$$
Y_{k} \left\lvert\, X_{k} \sim \begin{cases}B\left(2, \pi_{k}\right) & k \neq 60 \\ B\left(1, \pi_{k}\right) & k=60(\text { February 29 })\end{cases}\right.
$$

where

$$
\pi_{k}=\frac{\exp \left(\alpha_{k}\right)}{1+\exp \left(\alpha_{k}\right)}
$$

- We also use for $\sigma^{2} \sim \mathcal{I G}\left(\frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right)$.
- We use the block sampling strategies discussed before where candidates are sampled according to $\pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+L+1}\right)$ and accepted with proba

$$
\min \left(1, \frac{\prod_{i=k}^{k+L} g\left(y_{i} \mid x_{i}^{\prime}\right)}{\prod_{i=k}^{k+L} g\left(y_{i} \mid x_{i}\right)}\right)
$$

- We use the block sampling strategies discussed before where candidates are sampled according to $\pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+L+1}\right)$ and accepted with proba

$$
\min \left(1, \frac{\prod_{i=k}^{k+L} g\left(y_{i} \mid x_{i}^{\prime}\right)}{\prod_{i=k}^{k+L} g\left(y_{i} \mid x_{i}\right)}\right)
$$

- The parameter σ^{2} is updated through a simple Gibbs step

$$
\begin{aligned}
\sigma^{2} & \sim \pi\left(\sigma^{2} \mid x_{1: n}, y_{1: n}\right)=\pi\left(\sigma^{2} \mid x_{1: n}\right) \\
& =\mathcal{I G}\left(\frac{v_{0}+n-1}{2}, \frac{\gamma_{0}+\sum_{k=2}^{n}\left(\alpha_{k}-2 \alpha_{k-1}+\alpha_{k-2}\right)^{2}}{2}\right)
\end{aligned}
$$

- We use the block sampling strategies discussed before where candidates are sampled according to $\pi\left(x_{k: k+L} \mid x_{k-1}, x_{k+L+1}\right)$ and accepted with proba

$$
\min \left(1, \frac{\prod_{i=k}^{k+L} g\left(y_{i} \mid x_{i}^{\prime}\right)}{\prod_{i=k}^{k+L} g\left(y_{i} \mid x_{i}\right)}\right)
$$

- The parameter σ^{2} is updated through a simple Gibbs step

$$
\begin{aligned}
\sigma^{2} & \sim \pi\left(\sigma^{2} \mid x_{1: n}, y_{1: n}\right)=\pi\left(\sigma^{2} \mid x_{1: n}\right) \\
& =\mathcal{I G}\left(\frac{v_{0}+n-1}{2}, \frac{\gamma_{0}+\sum_{k=2}^{n}\left(\alpha_{k}-2 \alpha_{k-1}+\alpha_{k-2}\right)^{2}}{2}\right)
\end{aligned}
$$

- For block size $L=1,5,20$ and 40 , we compute the average trajectories of 100 parallel chains after 10,50, 100 and 500 iterations with initialization $x_{k}=0$ for all $k, \sigma^{2}=0.1$.

After 10 Iterations

Figure: Average trajectories over 100 chains for $L=1,5,20$ and 40 from top to bottom.

After 50 Iterations

Figure: Average trajectories over 100 chains for $L=1,5,20$ and 40 from top to bottom.

After 100 Iterations

Figure: Average trajectories over 100 chains for $L=1,5,20$ and 40 from top to bottom.

Figure: Average trajectories over 100 chains for $L=1,5,20$ and 40 from top to bottom.

Trajectory of alpha_333, blocksize 1

i rajectory or aıpna_1, Dıocksıze <0

Trajectory of alpha_333, blocksize 20

Figure: Traces of $\alpha_{1}, \alpha_{100}, \alpha_{333}$ and σ^{2} for $L=1$ (left) and $L=20$ (right).

- This (naive!) block sampling strategy performs well here because the likelihood of the observations is fairly flat.
- This (naive!) block sampling strategy performs well here because the likelihood of the observations is fairly flat.
- For a linear Gaussian observation equation, Knorr-Held compares this strategy to a direct Gibbs sampling implementation. As expected, the conditional proposal strategy is competitive when the observations are not very informative compared to the prior.
- This (naive!) block sampling strategy performs well here because the likelihood of the observations is fairly flat.
- For a linear Gaussian observation equation, Knorr-Held compares this strategy to a direct Gibbs sampling implementation. As expected, the conditional proposal strategy is competitive when the observations are not very informative compared to the prior.
- For more complex problems, such strategies are inefficient and we will need to use the observations to build the proposal.
- (Pitt \& Shephard, 1999) propose a more efficient strategy... also more computationally intensive.
- (Pitt \& Shephard, 1999) propose a more efficient strategy... also more computationally intensive.
- Consider the log full conditional distribution

$$
\begin{aligned}
& \log \pi\left(x_{k: k+L} \mid y_{\left.k: k+L, x_{k-1}, x_{k+L+1}\right)}\right. \\
& =\sum_{i=k}^{k+L} \log g\left(y_{i} \mid x_{i}\right)+\sum_{i=k}^{k+L+1} \log f\left(x_{i+1} \mid x_{i}\right) \\
& \equiv \sum_{i=k}^{k+L} \log g\left(y_{i} \mid x_{i}\right)-\frac{1}{2} \sum_{i=k}^{k+L+1}\left(x_{i+1}-A x_{i}\right)^{\top} \Sigma^{-1}\left(x_{i+1}-A x_{i}\right)
\end{aligned}
$$

which is not quadratic in x_{i} hence $\pi\left(x_{k: k+L} \mid y_{k: k+L}, x_{k-1}, x_{k+1}\right)$ is not Gaussian.

- (Pitt \& Shephard, 1999) propose a more efficient strategy... also more computationally intensive.
- Consider the log full conditional distribution

$$
\begin{aligned}
& \log \pi\left(x_{k: k+L} \mid y_{\left.k: k+L, x_{k-1}, x_{k+L+1}\right)}^{=\sum_{i=k}^{k+L} \log g\left(y_{i} \mid x_{i}\right)+\sum_{i=k}^{k+L+1} \log f\left(x_{i+1} \mid x_{i}\right)}\right. \\
& \equiv \sum_{i=k}^{k+L} \log g\left(y_{i} \mid x_{i}\right)-\frac{1}{2} \sum_{i=k}^{k+L+1}\left(x_{i+1}-A x_{i}\right)^{\top} \Sigma^{-1}\left(x_{i+1}-A x_{i}\right)
\end{aligned}
$$

which is not quadratic in x_{i} hence $\pi\left(x_{k: k+L} \mid y_{k: k+L}, x_{k-1}, x_{k+1}\right)$ is not Gaussian.

- The idea is to expand the log-likelihood part around some point estimates

$$
\begin{aligned}
\log g\left(y_{i} \mid x_{i}\right) \simeq & \log g\left(y_{i} \mid \widehat{x}_{i}\right)+\nabla \log g\left(y_{i} \mid \widehat{x}_{i}\right) \cdot\left(x_{i}-\widehat{x}_{i}\right) \\
& +\frac{1}{2}\left(x_{i}-\widehat{x}_{i}\right)^{\top} \nabla^{2} \log g\left(y_{i} \mid \widehat{x}_{i}\right)\left(x_{i}-\widehat{x}_{i}\right)
\end{aligned}
$$

- By doing this, we have a Gaussian approximation of the log-likelihood and then we obtain a Gaussian proposal

$$
q\left(x_{1: n}, x_{k: k+L}^{\prime}\right)=q\left(x_{-(k: k+L)}, x_{k: k+L}^{\prime}\right)
$$

$$
\begin{aligned}
& \log q\left(x_{-(k: k+L)}, x_{k: k+L}^{\prime}\right) \equiv \sum_{i=k}^{k+L} \nabla \log g\left(y_{i} \mid \widehat{x}_{i}\right) \cdot\left(x_{i}-\widehat{x}_{i}\right) \\
& +\frac{1}{2}\left(x_{i}-\widehat{x}_{i}\right)^{\top} \nabla^{2} \log g\left(y_{i} \mid \widehat{x}_{i}\right)\left(x_{i}-\widehat{x}_{i}\right) \\
& -\frac{1}{2} \sum_{i=k}^{k+L+1}\left(x_{i+1}-A x_{i}\right)^{\top} \Sigma^{-1}\left(x_{i+1}-A x_{i}\right)
\end{aligned}
$$

- By doing this, we have a Gaussian approximation of the log-likelihood and then we obtain a Gaussian proposal $q\left(x_{1: n}, x_{k: k+L}^{\prime}\right)=q\left(x_{-(k: k+L)}, x_{k: k+L}^{\prime}\right)$

$$
\begin{aligned}
& \log q\left(x_{-(k: k+L)}, x_{k: k+L}^{\prime}\right) \equiv \sum_{i=k}^{k+L} \nabla \log g\left(y_{i} \mid \widehat{x}_{i}\right) \cdot\left(x_{i}-\widehat{x}_{i}\right) \\
& +\frac{1}{2}\left(x_{i}-\widehat{x}_{i}\right)^{\top} \nabla^{2} \log g\left(y_{i} \mid \widehat{x}_{i}\right)\left(x_{i}-\widehat{x}_{i}\right) \\
& -\frac{1}{2} \sum_{i=k}^{k+L+1}\left(x_{i+1}-A x_{i}\right)^{\top} \Sigma^{-1}\left(x_{i+1}-A x_{i}\right)
\end{aligned}
$$

- (Pitt \& Shepard, 1999) propose to select

$$
\widehat{x}_{k: k+1}=\arg \max \pi\left(x_{k: k+L} \mid y_{k: k+L}, x_{k-1}, x_{k+L+1}\right)
$$

and a scheme to sample from $q\left(x_{-(k: k+L)}, x_{k: k+L}^{\prime}\right)$ which is of complexity $O(L)$.

- This algorithm is applied to the SV model where

$$
\begin{aligned}
& X_{k}=\phi X_{k-1}+\sigma V_{k}, V_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1) \\
& Y_{k}=\beta \exp \left(X_{k} / 2\right) W_{k}, W_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1) .
\end{aligned}
$$

- This algorithm is applied to the SV model where

$$
\begin{aligned}
& X_{k}=\phi X_{k-1}+\sigma V_{k}, V_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1) \\
& Y_{k}=\beta \exp \left(X_{k} / 2\right) W_{k}, W_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
\end{aligned}
$$

- Prior are set to $\phi \sim \mathcal{U}[-1,1], \sigma^{2} \sim \mathcal{I G}\left(\frac{v_{\sigma}}{2}, \frac{\gamma_{\sigma}}{2}\right)$ and $\beta \sim \mathcal{I G}\left(\frac{v_{\beta}}{2}, \frac{\gamma_{\beta}}{2}\right)$.
- This algorithm is applied to the SV model where

$$
\begin{aligned}
& X_{k}=\phi X_{k-1}+\sigma V_{k}, V_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1) \\
& Y_{k}=\beta \exp \left(X_{k} / 2\right) W_{k}, W_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
\end{aligned}
$$

- Prior are set to $\phi \sim \mathcal{U}[-1,1], \sigma^{2} \sim \mathcal{I G}\left(\frac{v_{\sigma}}{2}, \frac{\gamma_{\sigma}}{2}\right)$ and $\beta \sim \mathcal{I G}\left(\frac{v_{\beta}}{2}, \frac{\gamma_{\beta}}{2}\right)$.
- Full conditional distributions of the parameters given $x_{1: n}, y_{1: n}$ are standard.
- This algorithm is applied to the SV model where

$$
\begin{aligned}
& X_{k}=\phi X_{k-1}+\sigma V_{k}, V_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1) \\
& Y_{k}=\beta \exp \left(X_{k} / 2\right) W_{k}, W_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
\end{aligned}
$$

- Prior are set to $\phi \sim \mathcal{U}[-1,1], \sigma^{2} \sim \mathcal{I G}\left(\frac{v_{\sigma}}{2}, \frac{\gamma_{\sigma}}{2}\right)$ and $\beta \sim \mathcal{I G}\left(\frac{v_{\beta}}{2}, \frac{\gamma_{\beta}}{2}\right)$.
- Full conditional distributions of the parameters given $x_{1: n}, y_{1: n}$ are standard.
- Compared to standard single move strategies, the authors report significant improvement.

Figure: Autocorrelation plots for $\left(\phi, \sigma^{2}, \beta\right)$ with $L=1$

Figure: Autocorrelation plots for $\left(\phi, \sigma^{2}, \beta\right)$ with $L=50$ on average

