
CPSC 535
Metropolis-Hastings

AD

March 2007

AD () March 2007 1 / 45



Gibbs Sampler

Initialization: Select deterministically or randomly
θ =

�
θ
(0)
1 , ..., θ

(0)
p

�
.

Iteration i ; i � 1:

For k = 1 : p

Sample θ
(i )
k � π

�
θk j θ

(i )
�k

�
where

θ
(i )
�k =

�
θ
(i )
1 , ..., θ

(i )
k�1, θ

(i�1)
k+1 , ..., θ

(i�1)
p

�
.
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The Gibbs sampler requires sampling from the full conditional
distributions

π ( θk j θ�k ) .

For many complex models, it is impossible to sample from several of
these �full� conditional distributions.

Even if it is possible to implement the Gibbs sampler, the algorithm
might be very ine¢ cient because the variables are very correlated or
sampling from the full conditionals is extremely expensive/ine¢ cient.
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Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is an alternative algorithm to
sample from probability distribution π (θ) known up to a normalizing
constant.

This can be interpreted as the basis of all MCMC algorithm: It
provides a generic way to build a Markov kernel admitting π (θ) as an
invariant distribution.

The Metropolis algorithm was named the �Top algorithm of the 20th
century�by computer scientists, mathematicians, physicists.
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Introduce a proposal distribution/kernel q
�
θ, θ0

�
, i.e.Z

q
�
θ, θ0

�
dθ0 = 1 for any θ.

The basic idea of the MH algorithm is to propose a new candidate θ0

based on the current state of the Markov chain θ.

We only accept this algorithm with respect to a probability α
�
θ, θ0

�
which ensures that the invariant distribution of the transition kernel is
the target distribution π (θ).
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Initialization: Select deterministically or randomly θ(0).

Iteration i ; i � 1:

Sample θ� � q
�

θ(i�1), θ�
�
and compute

α
�

θ(i�1), θ�
�
= min

0@1, π (θ�) q
�

θ�, θ(i�1)
�

π
�

θ(i�1)
�
q
�

θ(i�1), θ�
�
1A .

With probability α
�

θ(i�1), θ�
�
, set θ(i ) = θ�; otherwise set

θ(i ) = θ(i�1).
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It is not necessary to know the normalizing constant of π (θ) to
implement the algorithm.

This algorithm is extremely general: q
�
θ, θ0

�
can be any proposal

distribution. So in practice, we can select it so that it is easy to
sample from it.

There is much more freedom than in the Gibbs sampler where the
proposal distributions are �xed.
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Random Walk Metropolis

The original Metropolis algorithm (1953) corresponds to the following
choice for q

�
θ, θ0

�
θ0 = θ + Z where Z � f ;

i.e. this is a so-called random walk proposal.

The distribution f (z) is the distribution of the random walk
increments Z and

q
�
θ, θ0

�
= f

�
θ0 � θ

�
) α

�
θ, θ0

�
= min

 
1,

π
�
θ0
�
f
�
θ � θ0

�
π (θ) f

�
θ0 � θ

� ! .
If f

�
θ0 � θ

�
= f

�
θ � θ0

�
- e.g. Z � N (0,Σ)- then

α
�
θ, θ0

�
= min

 
1,

π
�
θ0
�

π (θ)

!
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Independent Metropolis-Hastings

The Hastings�generalization (1970) corresponds to the following
choice for q

�
θ, θ0

�
q
�
θ, θ0

�
= q

�
θ0
�
;

i.e. this is a so-called independent proposal.

In this case, the acceptance probability is given by

α
�
θ, θ0

�
= min

 
1,

π
�
θ0
�
q (θ)

π (θ) q
�
θ0
�! = min 1, π�

�
θ0
�

q�
�
θ0
� q� (θ)

π� (θ)

!

where π� and q� are unnormalized versions of π and q.

The ratio π� (θ) /q� (θ) appearing in the Accept/Reject and
Importance Sampling methods also reappears here.
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To establish that the MH chain converges towards the required target,
we need to establish that

π (θ) is the invariant distribution of the Markov kernel associated to
the MH algorithm.
The Markov chain is irreducible; i.e. one can reach any set A such that
π (A) > 0.
The Markov chain is aperiodic; i.e. one does not visit in a periodic way
the state-space.
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Invariance of the MH kernel

The transition kernel associated to the MH algorithm can be
rewritten as

K
�
θ, θ0

�
= α

�
θ, θ0

�
q
�
θ, θ0

�
+

�
1�

Z
α (θ, u) q (θ, u) du

�
| {z }

rejection probability

δθ

�
θ0
�

Remark: This is a lose notation for

K
�
θ, dθ0

�
= α

�
θ, θ0

�
q
�
θ, θ0

�
dθ0+

�
1�

Z
α (θ, u) q (θ, u) du

�
δθ

�
dθ0
�
.

Clearly we haveZ
K
�
θ, θ0

�
dθ0 =

Z
α
�
θ, θ0

�
q
�
θ, θ0

�
dθ0

+

�
1�

Z
α (θ, u) q (θ, u) du

� Z
δθ

�
θ0
�
dθ0

= 1.

AD () March 2007 11 / 45



Invariance of the MH kernel

The transition kernel associated to the MH algorithm can be
rewritten as

K
�
θ, θ0

�
= α

�
θ, θ0

�
q
�
θ, θ0

�
+

�
1�

Z
α (θ, u) q (θ, u) du

�
| {z }

rejection probability

δθ

�
θ0
�

Remark: This is a lose notation for

K
�
θ, dθ0

�
= α

�
θ, θ0

�
q
�
θ, θ0

�
dθ0+

�
1�

Z
α (θ, u) q (θ, u) du

�
δθ

�
dθ0
�
.

Clearly we haveZ
K
�
θ, θ0

�
dθ0 =

Z
α
�
θ, θ0

�
q
�
θ, θ0

�
dθ0

+

�
1�

Z
α (θ, u) q (θ, u) du

� Z
δθ

�
θ0
�
dθ0

= 1.

AD () March 2007 11 / 45



Invariance of the MH kernel

The transition kernel associated to the MH algorithm can be
rewritten as

K
�
θ, θ0

�
= α

�
θ, θ0

�
q
�
θ, θ0

�
+

�
1�

Z
α (θ, u) q (θ, u) du

�
| {z }

rejection probability

δθ

�
θ0
�

Remark: This is a lose notation for

K
�
θ, dθ0

�
= α

�
θ, θ0

�
q
�
θ, θ0

�
dθ0+

�
1�

Z
α (θ, u) q (θ, u) du

�
δθ

�
dθ0
�
.

Clearly we haveZ
K
�
θ, θ0

�
dθ0 =

Z
α
�
θ, θ0

�
q
�
θ, θ0

�
dθ0

+

�
1�

Z
α (θ, u) q (θ, u) du

� Z
δθ

�
θ0
�
dθ0

= 1.

AD () March 2007 11 / 45



We want to show thatZ
π (θ)K

�
θ, θ0

�
dθ = π

�
θ0
�
.

Note that this condition is satis�ed if the reversibility property is
satis�ed: For all θ, θ0

π (θ)K
�
θ, θ0

�
= π

�
θ0
�
K
�
θ0, θ

�
;

i.e. the probability of being in A and moving to B is equal to the
probability of being in B and moving to A.

Indeed the reversibility condition implies thatZ
π (θ)K

�
θ, θ0

�
dθ =

Z
π
�
θ0
�
K
�
θ0, θ

�
dθ

= π
�
θ0
� Z

K
�
θ0, θ

�
dθ

= π
�
θ0
�
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Be careful: If a kernel is π�reversible then it is π�invariant but the
reverse is not true.

The deterministic scan Gibbs sampler is not π�reversible as

π (θ1, θ2)π
�

θ02
�� θ1
�

π
�

θ01
�� θ02
�

6= π
�
θ01, θ

0
2

�
π
�

θ2j θ01
�

π
�

θ02
�� θ01
�
.
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By de�nition of the kernel, we have

π (θ)K
�
θ, θ0

�
= π (θ) α

�
θ, θ0

�
q
�
θ, θ0

�
+

�
1�

Z
α (θ, u) q (θ, u) du

�
δθ

�
θ0
�

π (θ) .

Then

π (θ) α
�
θ, θ0

�
q
�
θ, θ0

�
= π (θ)min

 
1,

π
�
θ0
�
q
�
θ0, θ

�
π (θ) q

�
θ, θ0

� ! q �θ, θ0�
= min

�
π (θ) q

�
θ, θ0

�
,π
�
θ0
�
q
�
θ0, θ

��
= π

�
θ0
�
min

 
1,

π (θ) q
�
θ, θ0

�
π
�
θ0
�
q
�
θ0, θ

�! q �θ0, θ�
= π

�
θ0
�

α
�
θ0, θ

�
q
�
θ0, θ

�
.
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We have obviously�
1�

Z
α (θ, u) q (θ, u) du

�
δθ

�
θ0
�

π (θ)

=

�
1�

Z
α
�
θ0, u

�
q
�
θ0, u

�
du
�

δθ0 (θ)π
�
θ0
�
.

It follows that

π (θ)K
�
θ, θ0

�
= π

�
θ0
�
K
�
θ0, θ

�
.

Hence, π is the invariant distribution of the transition kernel K .
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Irreducibility and Aperiodicity

To ensure irreducibility, a su¢ cient but not necessary condition is that

π
�
θ0
�
> 0) q

�
θ, θ0

�
> 0.

Aperiodicity is automatically ensured as there is always a strictly
positive probability to reject the candidate.

Theoretically, the MH algorithm converges under very weak
assumptions to the target distribution π. In practice, this
convergence can be so slow that the algorithm is useless.
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If you are using independent proposals then you would like to have
q (θ) � π (θ) .

In practice, similarly to Rejection sampling or Importance Sampling,
you need to ensure that

π (θ)

q (θ)
� C

to obtain good performance.

If you don�t ensure this condition, the algorithm might give you the
impression it works well... but it does NOT.
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Examples

Example: Consider the case where

π (θ) ∝ exp

 
� θ2

2

!
.

We implement the MH algorithm for

q1 (θ) ∝ exp

 
� θ2

2 (0.2)2

!

so π (θ) /q1 (θ)! ∞ as θ ! ∞ and for

q2 (θ) ∝ exp

 
� θ2

2 (5)2

!

so π (θ) /q2 (θ) � C < ∞ for all θ.
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Figure: MCMC output for q1, we estimate E (θ) = 0.0206 and V (θ) = 0.83.
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Figure: MCMC output for q2, we estimate E (θ) = �0.004 and V (θ) = 1.00.
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Consider now a random walk move. In this case, there is no clear
guideline how to select the proposal distribution.

When the variance of the random walk increments (if it exists) is very
small then the acceptance rate can be expected to be around 0.5-0.7.

You would like to scale the random walk moves such that it is
possible to move reasonably fast in regions of positive probability
masses under π.
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Example: Consider the case where

π (θ) ∝ exp

 
� θ2

2

!
.

We implement the MH algorithm for

q1
�
θ, θ0

�
∝ exp

 
�
�
θ0 � θ

�2
2 (0.2)2

!
,

q2
�
θ, θ0

�
∝ exp

 
�
�
θ0 � θ

�2
2 (5)2

!
,

q3
�
θ, θ0

�
∝ exp

 
�
�
θ0 � θ

�2
2 (0.02)2

!
.
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Figure: MCMC output for q1, we estimate E (θ) = �0.02 and V (θ) = 0.99
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Figure: MCMC output for q2, we estimate E (θ) = 0.00 and V (θ) = 1.02.
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Figure: MCMC output for q3, we estimate E (θ) = 0.10 and V (θ) = 0.92.
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Heavy tails increments can prevent you from getting trappedb in
modes.

It is tempting to adapt the variance of the increments given the
simulation output... Unfortunately this breaks the Markov property
and biases results if one is not careful.
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Mixture of Proposals

In practice, random walk proposals can be used to explore locally the
space whereas independent walk proposals can be used to jump into
the space.

So a good strategy can be to use a proposal distribution of the form

q
�
θ, θ0

�
= λq1

�
θ0
�
+ (1� λ) q2

�
θ, θ0

�
where 0 < λ < 1.

This algorithm is de�nitely valid as it is just a particular case of the
MH algorithm.
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Mixture of Kernels

An alternative achieving the same purpose is to use a transition kernel

K
�
θ, θ0

�
= λK1

�
θ, θ0

�
+ (1� λ)K2

�
θ, θ0

�
where K1 (resp. K2) is an MH algorithm of proposal q1 (resp. q2).

This algorithm is di¤erent from using
q
�
θ, θ0

�
= λq1

�
θ0
�
+ (1� λ) q2

�
θ, θ0

�
. It is computationally

cheaper and still valid asZ
π (θ)K

�
θ, θ0

�
dθ

= λ
Z

π (θ)K1
�
θ, θ0

�
dθ + (1� λ)

Z
π (θ)K2

�
θ, θ0

�
dθ

= λπ
�
θ0
�
+ (1� λ)π

�
θ0
�

= π
�
θ0
�
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Langevin-type algorithm

We usually wants to sample candidates in regions of high probability
masses.

We can use

θ0 = θ +
σ2

2
r logπ (θ) + σV where V � N (0, 1)

where σ2 is selected such that the acceptance ratio is approximately
0.57.

The motivation is that, we know that in continuous-time

dθt =
1
2
r logπ (θ) + σdWt

admits π has an invariant distribution.
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More general strategies

To build q
�
θ, θ0

�
, you can use complex deterministic strategies.

Assume you are in θ and you want to propose

θ0 � N
�

ϕ (θ) , σ2
�
.

You do not need to have an explicit form for the mapping ϕ! As long
as ϕ is a deterministic mapping, then it is �ne. For example ϕ (θ)
could be the local maximum of π closest to θ that has been
determined using a gradient algorithm.

To compute the acceptance probability of the candidate θ0, you will
need to compute ϕ

�
θ0
�
and then you can compute the MH

acceptance ratio.
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Extensions

The standard MH algorithm uses the acceptance probability

α
�
θ, θ0

�
= min

 
1,

π
�
θ0
�
q
�
θ0, θ

�
π (θ) q

�
θ, θ0

� !

This is not necessary and one can also use any function

α
�
θ, θ0

�
=

δ
�
θ, θ0

�
π (θ) q

�
θ, θ0

�
which is such that

δ
�
θ, θ0

�
= δ

�
θ0, θ

�
and 0 � α

�
θ, θ0

�
� 1

Example (Baker, 1965):

α
�
θ, θ0

�
=

π
�
θ0
�
q
�
θ0, θ

�
π
�
θ0
�
q
�
θ0, θ

�
+ π (θ) q

�
θ, θ0

� .
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Indeed one can check that

K
�
θ, θ0

�
= α

�
θ, θ0

�
q
�
θ, θ0

�
+

�
1�

Z
α (θ, u) q (θ, u) du

�
δθ

�
θ0
�

is π-reversible.

We have

π (θ) α
�
θ, θ0

�
q
�
θ, θ0

�
= π (θ)

δ
�
θ, θ0

�
π (θ) q

�
θ, θ0

�q �θ, θ0�
= δ

�
θ, θ0

�
= δ

�
θ0, θ

�
= π

�
θ0
�

α
�
θ0, θ

�
q
�
θ0, θ

�
.

The MH acceptance is favoured as it increases the acceptance
probability.
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Limitations of the MH algorithm

The MH algorithm is a simple and very general algorithm to sample
from a target distribution π (θ).

In practice, the choice of the proposal distribution is absolutely crucial
on the performance of the algorithm.

In high dimensional problems, a simple MH algorithm will be useless.
It will be necessary to use a combination of MH kernels.... However
for the time being you might not have realized the power of the
mixture and composition of kernels.
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Metropolis one-at-a time

Consider the target distribution π (θ1, θ2) .

We use two MH kernels to sample from this distribution,

the kernel K1 updates θ1 and keeps θ2 �xed whereas
the kernel K2 updates θ2 and keeps θ1 �xed.

We then combine these kernels through mixture or composition.
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The proposal q1
�
θ, θ0

�
associated to K1

�
θ, θ0

�
is given by

q1
�
θ, θ0

�
= q1

�
(θ1, θ2) ,

�
θ01, θ

0
2

��
= q1

�
(θ1, θ2) , θ

0
1

�
δθ2

�
θ02
�
.

The acceptance probability is given by α1
�
θ, θ0

�
= min

�
1, r1

�
θ, θ0

��
where

r1
�
θ, θ0

�
=

π
�
θ0
�
q1
�
θ0, θ

�
π (θ) q1

�
θ, θ0

� = π
�
θ01, θ

0
2

�
q1
��

θ01, θ
0
2

�
, θ1
�

δθ02
(θ2)

π (θ1, θ2) q1
�
(θ1, θ2) , θ

0
1

�
δθ2

�
θ02
�

=
π
�
θ01, θ2

�
q1
��

θ01, θ2
�
, θ1
�

π (θ1, θ2) q1
�
(θ1, θ2) , θ

0
1

�
=

π
�

θ01
�� θ2
�
q1
��

θ01, θ2
�
, θ1
�

π ( θ1j θ2) q1
�
(θ1, θ2) , θ

0
1

� .
This move is also equivalent to an MH step of invariant distribution
π ( θ1j θ2).
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�
θ, θ0

�
= min

�
1, r1

�
θ, θ0

��
where

r1
�
θ, θ0

�
=

π
�
θ0
�
q1
�
θ0, θ

�
π (θ) q1

�
θ, θ0

� = π
�
θ01, θ

0
2

�
q1
��

θ01, θ
0
2

�
, θ1
�

δθ02
(θ2)

π (θ1, θ2) q1
�
(θ1, θ2) , θ

0
1

�
δθ2

�
θ02
�

=
π
�
θ01, θ2

�
q1
��

θ01, θ2
�
, θ1
�

π (θ1, θ2) q1
�
(θ1, θ2) , θ

0
1

�
=

π
�

θ01
�� θ2
�
q1
��

θ01, θ2
�
, θ1
�

π ( θ1j θ2) q1
�
(θ1, θ2) , θ

0
1

� .
This move is also equivalent to an MH step of invariant distribution
π ( θ1j θ2).
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The proposal q2
�
θ, θ0

�
associated to K2

�
θ, θ0

�
is given by

q2
�
θ, θ0

�
= q2

�
(θ1, θ2) ,

�
θ01, θ

0
2

��
= δθ1

�
θ01
�
q2
�
(θ1, θ2) , θ

0
2

�
.

The acceptance probability is given by α2
�
θ, θ0

�
= min

�
1, r2

�
θ, θ0

��
where

r
�
θ, θ0

�
=

π
�
θ0
�
q2
�
θ0, θ

�
π (θ) q2

�
θ, θ0

� = π
�
θ01, θ

0
2

�
δθ01
(θ1) q2

��
θ01, θ

0
2

�
, θ2
�

π (θ1, θ2) δθ1

�
θ01
�
q2
�
(θ1, θ2) , θ

0
2

�
=

π
�
θ1, θ

0
2

�
q2
��

θ1, θ
0
2

�
, θ2
�

π (θ1, θ2) q2
�
(θ1, θ2) , θ

0
2

�
=

π
�

θ02
�� θ1
�
q2
��

θ1, θ
0
2

�
, θ2
�

π ( θ2j θ1) q2
�
(θ1, θ2) , θ

0
2

� .
This move is also equivalent to an MH step of invariant distribution
π ( θ2j θ1).
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�
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0
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This move is also equivalent to an MH step of invariant distribution
π ( θ2j θ1).
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Assume we use a composition of these kernels, then the resulting
algorithm proceeds as follows at iteration i .
MH step to update component 1

Sample θ�1 � q1
��

θ
(i�1)
1 , θ

(i�1)
2

�
, �
�
and compute

α1
��

θ
(i�1)
1 , θ

(i�1)
2

�
,
�

θ�1, θ
(i�1)
2

��
= min

0@1, π
�

θ�1 j θ
(i�1)
2

�
q1
��

θ�1, θ
(i�1)
2

�
, θ
(i�1)
1

�
π
�

θ
(i�1)
1

��� θ
(i�1)
2

�
q1
��

θ
(i�1)
1 , θ

(i�1)
2

�
, θ�1

�
1A

With probability α1
��

θ
(i�1)
1 , θ

(i�1)
2

�
,
�

θ�1, θ
(i�1)
2

��
, set θ

(i )
1 = θ�1

and otherwise θ
(i )
1 = θ

(i�1)
1 .
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MH step to update component 2

Sample θ�2 � q2
��

θ
(i )
1 , θ

(i�1)
2

�
, �
�
and compute

α2
��

θ
(i )
1 , θ

(i�1)
2

�
,
�

θ
(i )
1 , θ

�
2

��
= min

0@1, π
�

θ�2 j θ
(i )
1

�
q2
��

θ
(i )
1 , θ

�
2

�
, θ
(i�1)
2

�
π
�

θ
(i�1)
2

��� θ
(i )
1

�
q2
��

θ
(i )
1 , θ

(i�1)
2

�
, θ�2

�
1A

With probability α2
��

θ
(i )
1 , θ

(i�1)
2

�
,
�

θ
(i )
1 , θ

�
1

��
, set θ

(i )
2 = θ�2

otherwise θ
(i )
2 = θ

(i�1)
2 .
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MH step to update component 2

Sample θ�2 � q2
��

θ
(i )
1 , θ

(i�1)
2

�
, �
�
and compute

α2
��

θ
(i )
1 , θ

(i�1)
2

�
,
�

θ
(i )
1 , θ

�
2

��
= min

0@1, π
�

θ�2 j θ
(i )
1

�
q2
��

θ
(i )
1 , θ

�
2

�
, θ
(i�1)
2

�
π
�

θ
(i�1)
2

��� θ
(i )
1

�
q2
��

θ
(i )
1 , θ

(i�1)
2

�
, θ�2

�
1A

With probability α2
��

θ
(i )
1 , θ

(i�1)
2

�
,
�

θ
(i )
1 , θ

�
1

��
, set θ

(i )
2 = θ�2

otherwise θ
(i )
2 = θ

(i�1)
2 .
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Assume we use a even mixture of these kernels, then the resulting
algorithm proceeds as follows at iteration i .

Sample the index of the component to update J � U f1, 2g .
Set θ

(i )
�J = θ

(i�1)
�J .

Sample θ�J � qJ
��

θ
(i�1)
1 , θ

(i�1)
2

�
, �
�
and compute

αJ

��
θ
(i�1)
1 , θ

(i�1)
2

�
,
�

θ�J , θ
(i )
�J

��
= min

0@1, π
�

θ�J j θ
(i )
�J

�
qJ
��

θ�J , θ
(i )
�J

�
, θ
(i�1)
J

�
π
�

θ
(i�1)
J

��� θ
(i )
�J

�
qK
��

θ
(i�1)
J , θ

(i )
�J

�
, θ�J

�
1A .

With probability αJ

��
θ
(i�1)
J , θ

(i�1)
J

�
,
�

θ�J , θ
(i )
�J

��
, set θ

(i )
J = θ�J

otherwise θ
(i )
J = θ

(i�1)
J .
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It is clear that in such cases both K1 and K2 are NOT irreducible and
aperiodic as each of them only update one component.

However, the composition and mixture of these kernels can be
irreducible and aperiodic because then all the components are
updated.
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Consider now the case where

q1
�
(θ1, θ2) , θ

0
1

�
= π

�
θ01
�� θ2
�
.

then

r1
�
θ, θ0

�
=

π
�

θ01
�� θ2
�
q1
��

θ01, θ2
�
, θ1
�

π ( θ1j θ2) q1
�
(θ1, θ2) , θ

0
1

� = π
�

θ01
�� θ2
�

π ( θ1j θ2)
π ( θ1j θ2)π

�
θ01
�� θ2
� = 1

Similarly if q2
�
(θ1, θ2) , θ

0
2

�
= π

�
θ02
�� θ1
�
then r2

�
θ, θ0

�
= 1.

If you take for proposal distributions in the MH kernels the full
conditional distributions then you have the Gibbs sampler!
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Generally speaking, to sample from π (θ) where θ = (θ1, ..., θp) , we
can use the following algorithm at iteration i .

Iteration i ; i � 1:

For k = 1 : p

Sample θ
(i )
k using an MH step of proposal distribution

qk
��

θ
(i )
�k , θ

(i�1)
k

�
, θ0k
�
and target π

�
θk j θ

(i )
�k

�
where

θ
(i )
�k =

�
θ
(i )
1 , ..., θ

(i )
k�1, θ

(i�1)
k+1 , ..., θ

(i�1)
p

�
.
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If we have qk
�
θ1:p , θ

0
k

�
= π

�
θ0k
�� θ�k

�
then we are back to the Gibbs

sampler.

We can update some parameters according to π
�

θ0k
�� θ�k

�
(and the

move is automatically accepted) and others according to di¤erent
proposals.

Example: Assume we have π (θ1, θ2) where it is easy to sample from
π ( θ1j θ2) and then use an MH step of invariant distribution
π ( θ2j θ1) .
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At iteration i .

Sample θ
(i )
1 � π

�
θ1j θ(i�1)2

�
.

Sample θ
(i )
2 using one MH step of proposal distribution

q2
��

θ
(i )
1 , θ

(i�1)
2

�
, θ2
�
and target π

�
θ2j θ(i )1

�
.

There is NO NEED to run the MH algorithm multiple steps to ensure
that θ

(i )
2 � π

�
θ2j θ(i�1)2

�
.
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In practice, we divide the parameter space θ = (θ1, ..., θp) .

We update each parameter θk according to an MH step of propsal
distribution qk

�
θ1:p , θ

0
k

�
= qk

�
(θ�k , θk ) , θ

0
k

�
and invariant

distribution π ( θk j θ�k ) .
You are now equipped to �t advanced statistical models...
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