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Finite State-Space Hidden Markov Models

Mixture models cannot model dependent data; one straightforward
extension consists of picking for fXng a �nite state-space Markov
chain.

We have say Xn 2 f1, ...,Kg with

Yn jXn � gXn (y)

but Pr (X1 = i) = µi and

Pr (Xn+1 = j jXn = i) = pi ,j .

In this case, the probability to stay in a given state is geometric.

Simple model (over)used in speech processing, DNA sequence
analysis, communications etc.
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Figure: Realization of 100 observations for K = 3, µ1 = �1, σ21 = 0.1,
µ2 = 0, σ

2
2 = 1 µ3 = 1, σ22 = 0.1 with pi ,i = 0.90, pi ,j = 0.05 for i 6= j . fXng is

displayed in red, fYng in blue.
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Given T observations y1, ..., yT then the likelihood of the observations
is given by

p (y1, ..., yT j θ)
where θ includes all the unknown parameters.

The likelihood can be computed exactly using a simple recursion.
However, we limit ourselves �rst to the complete likelihood

p (y1:T , x1:T j θ) = p (y1:T j θ, x1:T ) p (x1:T j θ)

where
p (y1:T j θ, x1:T ) = ∏T

n=1 p (yn j θ, xn) ,
p (x1:T j θ) = p (x1j θ)∏T

n=2 p (xn j θ, xn�1) .
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Typically, one uses the EM algorithm to estimate the maximum
likelihood estimate of the unknown parameter θ.

Alternatively, given a prior distribution p (θ) on θ, then we can
perform Bayesian inference and estimate

p ( θ, x1:T j y1:T ) =
p (y1:T j θ, x1:T ) p (x1:T j θ) p (θ)

p (y1:T )

For mixture, there is no closed-form. Hence there is none for HMM.
The Gibbs sampler can be implemented for this class of models by
sampling iteratively from p (θj y1:T , x1:T ) and p (x1:T j y1:T , θ).
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Extension to General State-Space HMM

It is important to realize that this class of models can be signi�cantly
extended by taking a latent process fXng which is not discrete-valued.

A simple example correspond to the case where

Xn = αXn�1 + σvVn, Vn
i.i.d.� N (0, 1)

Yn = Xn + σwWn, Wn
i.i.d.� N (0, 1)

Clearly, we are in the case where fXng is a Markov process

Xn jXn�1 � fθ (xn j xn�1)

and Yn jXn � gθ (yn j xn) where

fθ (xn j xn�1) = N
�
xn; αxn�1, σ2v

�
,

gθ (yn j xn) = N
�
yn; xn, σ2w

�
.

and θ =
�
α, σ2v , σ

2
w

�
.
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Suppose you have

Yn = g (tn) +Wn where Wn � N
�
0, σ2

�
with

d2g (t)
dt2

= τ
dB (t)
dt

where B (t) Wiener process

with B (0) = 0 and var (B (t)) = 1.

With initial conditions such that (g (t1) dg (t1) /dt) � N (0, kI2)

Yn = (1 0)X (tn) +Wn,

X (tn) =

�
1 δn
0 1

�
X (tn�1) + Vn, Vn � N

�
0,
�

δ3n/3 δ2n/2
δ2n/2 δn

��
where δn = tn � tn�1.
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Figure: Bearings-only-tracking data
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Consider the coordinates of a target observed through a radar.0BBBB@
X 1n
�
X
1

n
X 2n
�
X
2

n

1CCCCA = ∆

0BB@
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

1CCA
0BBBB@
X 1n�1
�
X
1

n�1
X 2n�1
�
X
2

n�1

1CCCCA+ Vn, Vn i.i.d.� N (0,Σv ) ,

Yn = tan�1
�
X 1n
X 2n

�
+Wn, Wn

i.i.d.� N
�
0, σ2

�
.

where the process fYng is observed but fXng is unknown.
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Figure: Four stock prices
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Figure: Log-return of a stock price
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Consider the log-return sequence of a stock then a popular model in
�nancial econometrics is the stochastic volatility model

Xn = αXn�1 + σVn where Vn
i.i.d.� N (0, 1)

Yn = β exp (Xn/2)Wn where Wn
i.i.d.� N (0, 1)

where the process fYng is observed but fXng and θ = (α, σ, β) are
unknown.

We have

fθ (xn j xn�1) = N
�
xn; αxn�1, σ2v

�
,

gθ (yn j xn) = N
�
yn; 0, β

2 exp (xn)
�
.
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Many real-world problems can be rewritten as

Xn jXn�1 � fθ (xn j xn�1) , X1 � µ (x1) ,

Yn jXn � gθ (yn j xn)

where θ � p (θ) .

In a Bayesian framework, given y1:T , we are interested in estimating
the posterior

p (x1:T , θj y1:T ) ∝ p (y1:T j θ, x1:T ) p (x1:T j θ) p (θ)

where
p (y1:T j θ, x1:T ) = ∏T

n=1 gθ (yn j xn) ,
p (x1:T j θ) = µ (x1)∏T

n=2 fθ (xn j xn�1) .
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Assume you have

Xn = αXn�1 + σvVn, Vn
i.i.d.� N (0, 1)

Yn = Xn + σwWn, Wn
i.i.d.� N (0, 1)

where X1 � N (0, 1), α � N
�
0, σ20

�
, σ2v � IG

�
υ0
2 ,

γ0
2

�
and

σ2w � IG
�

υ0
2 ,

γ0
2

�
.

Gibbs sampler based on

p
�
xk j y1:T , x�k , α, σ

2
v , σ

2
w

�
, p
�

σ2v , σ
2
w

�� y1:T , x1:T , α
�
,

p
�

αj y1:T , x1:T , σ
2
v , σ

2
w

�
.
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We have for 1 < k < T

p
�
xk j y1:T , x�k , α, σ

2
v , σ

2
w

�
∝ g

�
yk j xk , σ2w

�
f
�
xk j xk�1, α, σ2v

�
�f
�
xk+1j xk , α, σ2v

�
= N

�
xk ;mk , σ

2
k

�
where

mk = σ2k

�
y2k
σ2k
+ α

xk+1 + xk�1
σ2v

�
,

1
σ2k

=
1

σ2w
+

α2 + 1
σ2v

.

We have

p
�

σ2v , σ
2
w

�� y1:T , x1:T , α
�
= p

�
σ2v
�� x1:T , α

�
p
�

σ2w
�� y1:T , x1:T

�
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We have

p
�

σ2v
�� x1:T , α

�
∝ p

�
x1:T j α, σ2v

�
p
�
σ2v
�

∝ 1
σT�1v

exp
�
�∑T

k=2(xk�αxk�1)
2

2σ2v

�
1

σ
υ0
v
exp

�
� γ0
2σ2v

�
= IG

�
σ2v ;

υ0+T�1
2 ,

γ0+∑T
k=2(xk�αxk�1)

2

2

�

We have

p
�

σ2w
�� y1:T , x1:T

�
∝ p

�
y1:T j x1:T , σ

2
w

�
p
�
σ2w
�

∝ 1
σTw
exp

�
�∑T

k=2(yk�xk )
2

2σ2w

�
1

σ
υ0
w
exp

�
� γ0
2σ2w

�
= IG

�
σ2w ;

υ0+T
2 ,

γ0+∑T
k=1(yk�xk )

2

2

�
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Finally we have

p
�

αj y1:T , x1:T , σ
2
v , σ

2
w

�
= p

�
αj x1:T , σ

2
v

�
∝ p

�
x1:T j α, σ2v

�
p (α)

∝ 1
σT�1v

exp
�
�∑T

k=2(xk�αxk�1)
2

2σ2v

�
exp

�
� α2

2σ20

�
= N

�
α;mα, σ

2
α

�
where

1
σ2α

=
1

σ20
+

∑T�1
k=1 x

2
k

σ2v
,

mα = σ2α

 
T

∑
k=2

xkxk�1

!
.
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Figure: 100,000 samples after 10,000 burn in with α = 0.9, σw = 1 and σv = 1
for T = 100. Approximations of p (αj y1:T ) , p

�
σ2w
�� y1:T

�
and p

�
σ2v
�� y1:T

�
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We have

Xn = AXn�1 + Vn, Vn � N (0,Σ) ,

Yn = tan�1
�
X 1n
X 2n

�
+Wn, Wn � N

�
0, σ2

�

Assume for sake of simplicity that only x1:T are unknown, we want to
estimate

p (x1:T j y1:T ) .
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We sample from the full conditional distributions

p (xk j y1:T , x�k ) ∝ p (xk j x�k ) g (yk j xk )
∝ f (xk+1j xk ) f (xk j xk�1) g (yk j xk ) .

We have

p (xk j x�k ) ∝ f (xk+1j xk ) f (xk j xk�1) = N (xk ;mk ,Σk )

where

Σ�1k = Σ�1 + ATΣ�1A,
mk = Σk

�
Σ�1Axk�1 + ATΣ�1xk+1

�
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To sample from

p (xk j y1:T , x�k ) ∝ p (xk j x�k ) g (yk j xk )

we can use rejection sampling as you can sample from p (xk j x�k ) and

g (yk j xk ) =
1p
2πσ

exp

 
�
�
yk � tan�1

�
x1k
x2k

��2
/
�
2σ2
�!

� 1p
2πσ

.

Gibbs sampling can be implemented even for non-linear models
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Figure: MCMC for state estimation using bearings-only-tracking data. Mean and
credible intervals for p (xn jY1:n) .
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We have

Xn = αXn�1 + σVn where Vn
i.i.d.� N (0, 1)

Yn = β exp (Xn/2)Wn where Wn
i.i.d.� N (0, 1)

Prior model: α � U (�1, 1), σ2 � IG
�

υ0
2 ,

γ0
2

�
and β � IG

�
υ0
2 ,

γ0
2

�
.
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We want to sample from

p
�
xk j x�k , y1:T , α, σ

2, β
�

∝ f
�
xk j xk�1, α, σ2

�
�f
�
xk+1j xk , α, σ2

�
g (yk j xk , β)

where

p
�
xk j x�k , α, σ2

�
∝ f

�
xk j xk�1, α, σ2

�
f
�
xk+1j xk , α, σ2

�
= N

�
xk ;mk =

α (xk�1 + xk+1)
1+ α2

, σ2k =
σ2

1+ α2

�
.

We have

log g (yk j xk , β) � � xk
2 �

y 2k
2β2
exp (�xk )

� � xk
2 �

y 2k
2β2
(exp (�mk ) (1+mk )� xk exp (�mk )) [as exp (u) � 1+ u]

= log g � (yk j xk , β)

AD () February 2007 24 / 28



We want to sample from

p
�
xk j x�k , y1:T , α, σ

2, β
�

∝ f
�
xk j xk�1, α, σ2

�
�f
�
xk+1j xk , α, σ2

�
g (yk j xk , β)

where

p
�
xk j x�k , α, σ2

�
∝ f

�
xk j xk�1, α, σ2

�
f
�
xk+1j xk , α, σ2

�
= N

�
xk ;mk =

α (xk�1 + xk+1)
1+ α2

, σ2k =
σ2

1+ α2

�
.

We have

log g (yk j xk , β) � � xk
2 �

y 2k
2β2
exp (�xk )

� � xk
2 �

y 2k
2β2
(exp (�mk ) (1+mk )� xk exp (�mk )) [as exp (u) � 1+ u]

= log g � (yk j xk , β)
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We propose to sample from p
�
xk j xk�1, xk+1, yk , α, σ2, β

�
using

rejection by sampling from where

q (xk ) ∝ p
�
xk j x�k , α, σ2

�
g � (yk j xk , β)

= N
�
xk ;mk +

σ2k
2

�
y2k
β2
exp

�
�m2k

�
� 1
�
, σ2k

�
.

Then we accept the proposal with probability

g (yk j xk , β)
g � (yk j xk , β)

.

Update of the hypeparameters are straightforward.
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Figure: UK Sterling/US dollar exhange rates from 1/10/81 to 28/6/85: 200,000
samples after 20,000 burn-in. Approximations of p (αj y1:T ) , p

�
σ2
�� y1:T

�
and

p ( βj y1:T ) .
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These Gibbs sampling algorithms are simple but once more they are
not very e¢ cient as we sample typically p (xk j y1:T , x�k , θ) then
p ( θj y1:T , x1:T ) .

We would like to be able to sample all the states variables jointly; i.e.
sampling iteratively from p (x1:T j y1:T , θ) then p ( θj y1:T , x1:T ).

Generally sampling exactly from p (x1:T j y1:T , θ) is impossible except
for HMM and linear Gaussian models.
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All the models we have seen rely on the ability to sample from some
full conditional distribution π ( θk j θ�k ).

Although it is possible in numerous models, there are also numerous
models where one CANNOT do it.

In such cases, alternative methods relying on the Metropolis-Hastings
algorithm have to be developed.

AD () February 2007 28 / 28



All the models we have seen rely on the ability to sample from some
full conditional distribution π ( θk j θ�k ).
Although it is possible in numerous models, there are also numerous
models where one CANNOT do it.

In such cases, alternative methods relying on the Metropolis-Hastings
algorithm have to be developed.

AD () February 2007 28 / 28



All the models we have seen rely on the ability to sample from some
full conditional distribution π ( θk j θ�k ).
Although it is possible in numerous models, there are also numerous
models where one CANNOT do it.

In such cases, alternative methods relying on the Metropolis-Hastings
algorithm have to be developed.

AD () February 2007 28 / 28


