## CPSC 535

# Gibbs Sampling 

## AD

February 2007

## Finite State-Space Hidden Markov Models

- Mixture models cannot model dependent data; one straightforward extension consists of picking for $\left\{X_{n}\right\}$ a finite state-space Markov chain.


## Finite State-Space Hidden Markov Models

- Mixture models cannot model dependent data; one straightforward extension consists of picking for $\left\{X_{n}\right\}$ a finite state-space Markov chain.
- We have say $X_{n} \in\{1, \ldots, K\}$ with

$$
Y_{n} \mid X_{n} \sim g_{X_{n}}(y)
$$

but $\operatorname{Pr}\left(X_{1}=i\right)=\mu_{i}$ and

$$
\operatorname{Pr}\left(X_{n+1}=j \mid X_{n}=i\right)=p_{i, j}
$$

## Finite State-Space Hidden Markov Models

- Mixture models cannot model dependent data; one straightforward extension consists of picking for $\left\{X_{n}\right\}$ a finite state-space Markov chain.
- We have say $X_{n} \in\{1, \ldots, K\}$ with

$$
Y_{n} \mid X_{n} \sim g_{X_{n}}(y)
$$

but $\operatorname{Pr}\left(X_{1}=i\right)=\mu_{i}$ and

$$
\operatorname{Pr}\left(X_{n+1}=j \mid X_{n}=i\right)=p_{i, j} .
$$

- In this case, the probability to stay in a given state is geometric.


## Finite State-Space Hidden Markov Models

- Mixture models cannot model dependent data; one straightforward extension consists of picking for $\left\{X_{n}\right\}$ a finite state-space Markov chain.
- We have say $X_{n} \in\{1, \ldots, K\}$ with

$$
Y_{n} \mid X_{n} \sim g_{X_{n}}(y)
$$

but $\operatorname{Pr}\left(X_{1}=i\right)=\mu_{i}$ and

$$
\operatorname{Pr}\left(X_{n+1}=j \mid X_{n}=i\right)=p_{i, j}
$$

- In this case, the probability to stay in a given state is geometric.
- Simple model (over)used in speech processing, DNA sequence analysis, communications etc.


Figure: Realization of 100 observations for $K=3, \mu_{1}=-1, \sigma_{1}^{2}=0.1$, $\mu_{2}=0, \sigma_{2}^{2}=1 \mu_{3}=1, \sigma_{2}^{2}=0.1$ with $p_{i, i}=0.90, p_{i, j}=0.05$ for $i \neq j$. $\left\{X_{n}\right\}$ is displayed in red, $\left\{Y_{n}\right\}$ in blue.

- Given $T$ observations $y_{1}, \ldots, y_{T}$ then the likelihood of the observations is given by

$$
p\left(y_{1}, \ldots, y_{T} \mid \theta\right)
$$

where $\theta$ includes all the unknown parameters.

- Given $T$ observations $y_{1}, \ldots, y_{T}$ then the likelihood of the observations is given by

$$
p\left(y_{1}, \ldots, y_{T} \mid \theta\right)
$$

where $\theta$ includes all the unknown parameters.

- The likelihood can be computed exactly using a simple recursion. However, we limit ourselves first to the complete likelihood

$$
p\left(y_{1: T}, x_{1: T} \mid \theta\right)=p\left(y_{1: T} \mid \theta, x_{1: T}\right) p\left(x_{1: T} \mid \theta\right)
$$

where

$$
\begin{aligned}
& p\left(y_{1: T} \mid \theta, x_{1: T}\right)=\prod_{n=1}^{T} p\left(y_{n} \mid \theta, x_{n}\right), \\
& p\left(x_{1: T} \mid \theta\right)=p\left(x_{1} \mid \theta\right) \prod_{n=2}^{T} p\left(x_{n} \mid \theta, x_{n-1}\right) .
\end{aligned}
$$

- Typically, one uses the EM algorithm to estimate the maximum likelihood estimate of the unknown parameter $\theta$.
- Typically, one uses the EM algorithm to estimate the maximum likelihood estimate of the unknown parameter $\theta$.
- Alternatively, given a prior distribution $p(\theta)$ on $\theta$, then we can perform Bayesian inference and estimate

$$
p\left(\theta, x_{1: T} \mid y_{1: T}\right)=\frac{p\left(y_{1: T} \mid \theta, x_{1: T}\right) p\left(x_{1: T} \mid \theta\right) p(\theta)}{p\left(y_{1: T}\right)}
$$

- Typically, one uses the EM algorithm to estimate the maximum likelihood estimate of the unknown parameter $\theta$.
- Alternatively, given a prior distribution $p(\theta)$ on $\theta$, then we can perform Bayesian inference and estimate

$$
p\left(\theta, x_{1: T} \mid y_{1: T}\right)=\frac{p\left(y_{1: T} \mid \theta, x_{1: T}\right) p\left(x_{1: T} \mid \theta\right) p(\theta)}{p\left(y_{1: T}\right)}
$$

- For mixture, there is no closed-form. Hence there is none for HMM. The Gibbs sampler can be implemented for this class of models by sampling iteratively from $p\left(\theta \mid y_{1: T}, x_{1: T}\right)$ and $p\left(x_{1: T} \mid y_{1: T}, \theta\right)$.


## Extension to General State-Space HMM

- It is important to realize that this class of models can be significantly extended by taking a latent process $\left\{X_{n}\right\}$ which is not discrete-valued.


## Extension to General State-Space HMM

- It is important to realize that this class of models can be significantly extended by taking a latent process $\left\{X_{n}\right\}$ which is not discrete-valued.
- A simple example correspond to the case where

$$
\begin{aligned}
& X_{n}=\alpha X_{n-1}+\sigma_{v} V_{n}, V_{n} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1) \\
& Y_{n}=X_{n}+\sigma_{w} W_{n}, W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
\end{aligned}
$$

## Extension to General State-Space HMM

- It is important to realize that this class of models can be significantly extended by taking a latent process $\left\{X_{n}\right\}$ which is not discrete-valued.
- A simple example correspond to the case where

$$
\begin{aligned}
& X_{n}=\alpha X_{n-1}+\sigma_{v} V_{n}, V_{n} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1) \\
& Y_{n}=X_{n}+\sigma_{w} W_{n}, W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
\end{aligned}
$$

- Clearly, we are in the case where $\left\{X_{n}\right\}$ is a Markov process

$$
X_{n} \mid X_{n-1} \sim f_{\theta}\left(x_{n} \mid x_{n-1}\right)
$$

and $Y_{n} \mid X_{n} \sim g_{\theta}\left(y_{n} \mid x_{n}\right)$ where

$$
\begin{aligned}
f_{\theta}\left(x_{n} \mid x_{n-1}\right) & =\mathcal{N}\left(x_{n} ; \alpha x_{n-1}, \sigma_{v}^{2}\right), \\
g_{\theta}\left(y_{n} \mid x_{n}\right) & =\mathcal{N}\left(y_{n} ; x_{n}, \sigma_{w}^{2}\right) .
\end{aligned}
$$

and $\theta=\left(\alpha, \sigma_{v}^{2}, \sigma_{w}^{2}\right)$.

- Suppose you have

$$
Y_{n}=g\left(t_{n}\right)+W_{n} \text { where } W_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

with

$$
\frac{d^{2} g(t)}{d t^{2}}=\tau \frac{d B(t)}{d t} \text { where } B(t) \text { Wiener process }
$$

with $B(0)=0$ and $\operatorname{var}(B(t))=1$.

- Suppose you have

$$
Y_{n}=g\left(t_{n}\right)+W_{n} \text { where } W_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

with

$$
\frac{d^{2} g(t)}{d t^{2}}=\tau \frac{d B(t)}{d t} \text { where } B(t) \text { Wiener process }
$$

with $B(0)=0$ and $\operatorname{var}(B(t))=1$.

- With initial conditions such that $\left(g\left(t_{1}\right) d g\left(t_{1}\right) / d t\right) \sim \mathcal{N}\left(0, k l_{2}\right)$

$$
\begin{aligned}
Y_{n} & =\left(\begin{array}{ll}
1 & 0
\end{array}\right) X\left(t_{n}\right)+W_{n} \\
X\left(t_{n}\right) & =\left(\begin{array}{ll}
1 & \delta_{n} \\
0 & 1
\end{array}\right) X\left(t_{n-1}\right)+V_{n}, V_{n} \sim \mathcal{N}\left(0,\left(\begin{array}{cl}
\delta_{n}^{3} / 3 & \delta_{n}^{2} / 2 \\
\delta_{n}^{2} / 2 & \delta_{n}
\end{array}\right)\right)
\end{aligned}
$$

where $\delta_{n}=t_{n}-t_{n-1}$.


Figure: Bearings-only-tracking data

- Consider the coordinates of a target observed through a radar.

$$
\begin{aligned}
\left(\begin{array}{l}
X_{n}^{1} \\
\dot{X}_{n}^{1} \\
X_{n}^{2} \\
\dot{X}_{n}
\end{array}\right) & =\Delta\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
X_{n-1}^{1} \\
\dot{X}_{n-1}^{1} \\
X_{n-1}^{2} \\
\dot{X}_{n-1}
\end{array}\right)+V_{n}, V_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \Sigma_{v}\right), \\
Y_{n} & =\tan ^{-1}\left(\frac{X_{n}^{1}}{X_{n}^{2}}\right)+W_{n}, W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right) .
\end{aligned}
$$

where the process $\left\{Y_{n}\right\}$ is observed but $\left\{X_{n}\right\}$ is unknown.


Figure: Four stock prices


Figure: Log-return of a stock price

- Consider the log-return sequence of a stock then a popular model in financial econometrics is the stochastic volatility model

$$
\begin{aligned}
& X_{n}=\alpha X_{n-1}+\sigma V_{n} \text { where } V_{n} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1) \\
& Y_{n}=\beta \exp \left(X_{n} / 2\right) W_{n} \text { where } W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
\end{aligned}
$$

where the process $\left\{Y_{n}\right\}$ is observed but $\left\{X_{n}\right\}$ and $\theta=(\alpha, \sigma, \beta)$ are unknown.

- Consider the log-return sequence of a stock then a popular model in financial econometrics is the stochastic volatility model

$$
\begin{aligned}
& X_{n}=\alpha X_{n-1}+\sigma V_{n} \text { where } V_{n} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1) \\
& Y_{n}=\beta \exp \left(X_{n} / 2\right) W_{n} \text { where } W_{n} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)
\end{aligned}
$$

where the process $\left\{Y_{n}\right\}$ is observed but $\left\{X_{n}\right\}$ and $\theta=(\alpha, \sigma, \beta)$ are unknown.

- We have

$$
\begin{aligned}
f_{\theta}\left(x_{n} \mid x_{n-1}\right) & =\mathcal{N}\left(x_{n} ; \alpha x_{n-1}, \sigma_{v}^{2}\right) \\
g_{\theta}\left(y_{n} \mid x_{n}\right) & =\mathcal{N}\left(y_{n} ; 0, \beta^{2} \exp \left(x_{n}\right)\right)
\end{aligned}
$$

- Many real-world problems can be rewritten as

$$
\begin{aligned}
X_{n} \mid X_{n-1} & \sim f_{\theta}\left(x_{n} \mid x_{n-1}\right), X_{1} \sim \mu\left(x_{1}\right) \\
Y_{n} \mid X_{n} & \sim g_{\theta}\left(y_{n} \mid x_{n}\right)
\end{aligned}
$$

where $\theta \sim p(\theta)$.

- Many real-world problems can be rewritten as

$$
\begin{aligned}
X_{n} \mid X_{n-1} & \sim f_{\theta}\left(x_{n} \mid x_{n-1}\right), X_{1} \sim \mu\left(x_{1}\right), \\
Y_{n} \mid X_{n} & \sim g_{\theta}\left(y_{n} \mid x_{n}\right)
\end{aligned}
$$

where $\theta \sim p(\theta)$.

- In a Bayesian framework, given $y_{1: T}$, we are interested in estimating the posterior

$$
p\left(x_{1: T}, \theta \mid y_{1: T}\right) \propto p\left(y_{1: T} \mid \theta, x_{1: T}\right) p\left(x_{1: T} \mid \theta\right) p(\theta)
$$

where

$$
\begin{aligned}
& p\left(y_{1: T} \mid \theta, x_{1: T}\right)=\prod_{n=1}^{T} g_{\theta}\left(y_{n} \mid x_{n}\right), \\
& p\left(x_{1: T} \mid \theta\right)=\mu\left(x_{1}\right) \prod_{n=2}^{T} f_{\theta}\left(x_{n} \mid x_{n-1}\right) .
\end{aligned}
$$

- Assume you have

$$
\begin{aligned}
& X_{n}=\alpha X_{n-1}+\sigma_{v} V_{n}, V_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1) \\
& Y_{n}=X_{n}+\sigma_{w} W_{n}, W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
\end{aligned}
$$

where $X_{1} \sim \mathcal{N}(0,1), \alpha \sim \mathcal{N}\left(0, \sigma_{0}^{2}\right), \sigma_{v}^{2} \sim \mathcal{I G}\left(\frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right)$ and $\sigma_{w}^{2} \sim \mathcal{I} \mathcal{G}\left(\frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right)$.

- Assume you have

$$
\begin{aligned}
& X_{n}=\alpha X_{n-1}+\sigma_{v} V_{n}, V_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1) \\
& Y_{n}=X_{n}+\sigma_{w} W_{n}, W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
\end{aligned}
$$

where $X_{1} \sim \mathcal{N}(0,1), \alpha \sim \mathcal{N}\left(0, \sigma_{0}^{2}\right), \sigma_{v}^{2} \sim \mathcal{I G}\left(\frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right)$ and $\sigma_{w}^{2} \sim \mathcal{I} \mathcal{G}\left(\frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right)$.

- Gibbs sampler based on

$$
\begin{aligned}
& p\left(x_{k} \mid y_{1: T}, x_{-k}, \alpha, \sigma_{v}^{2}, \sigma_{w}^{2}\right), p\left(\sigma_{v}^{2}, \sigma_{w}^{2} \mid y_{1: T}, x_{1: T}, \alpha\right), \\
& p\left(\alpha \mid y_{1: T}, x_{1: T}, \sigma_{v}^{2}, \sigma_{w}^{2}\right) .
\end{aligned}
$$

- We have for $1<k<T$

$$
\begin{aligned}
p\left(x_{k} \mid y_{1: T}, x_{-k}, \alpha, \sigma_{v}^{2}, \sigma_{w}^{2}\right) \propto & g\left(y_{k} \mid x_{k}, \sigma_{w}^{2}\right) f\left(x_{k} \mid x_{k-1}, \alpha, \sigma_{v}^{2}\right) \\
& \times f\left(x_{k+1} \mid x_{k}, \alpha, \sigma_{v}^{2}\right) \\
= & \mathcal{N}\left(x_{k} ; m_{k}, \sigma_{k}^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
m_{k} & =\sigma_{k}^{2}\left(\frac{y_{k}^{2}}{\sigma_{k}^{2}}+\alpha \frac{x_{k+1}+x_{k-1}}{\sigma_{v}^{2}}\right) \\
\frac{1}{\sigma_{k}^{2}} & =\frac{1}{\sigma_{w}^{2}}+\frac{\alpha^{2}+1}{\sigma_{v}^{2}}
\end{aligned}
$$

- We have for $1<k<T$

$$
\begin{aligned}
p\left(x_{k} \mid y_{1: T}, x_{-k}, \alpha, \sigma_{v}^{2}, \sigma_{w}^{2}\right) \propto & g\left(y_{k} \mid x_{k}, \sigma_{w}^{2}\right) f\left(x_{k} \mid x_{k-1}, \alpha, \sigma_{v}^{2}\right) \\
& \times f\left(x_{k+1} \mid x_{k}, \alpha, \sigma_{v}^{2}\right) \\
= & \mathcal{N}\left(x_{k} ; m_{k}, \sigma_{k}^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
m_{k} & =\sigma_{k}^{2}\left(\frac{y_{k}^{2}}{\sigma_{k}^{2}}+\alpha \frac{x_{k+1}+x_{k-1}}{\sigma_{v}^{2}}\right) \\
\frac{1}{\sigma_{k}^{2}} & =\frac{1}{\sigma_{w}^{2}}+\frac{\alpha^{2}+1}{\sigma_{v}^{2}}
\end{aligned}
$$

- We have

$$
p\left(\sigma_{v}^{2}, \sigma_{w}^{2} \mid y_{1: T}, x_{1: T}, \alpha\right)=p\left(\sigma_{v}^{2} \mid x_{1: T}, \alpha\right) p\left(\sigma_{w}^{2} \mid y_{1: T}, x_{1: T}\right)
$$

- We have

$$
\begin{aligned}
& p\left(\sigma_{v}^{2} \mid x_{1: T}, \alpha\right) \propto p\left(x_{1: T} \mid \alpha, \sigma_{v}^{2}\right) p\left(\sigma_{v}^{2}\right) \\
& \propto \frac{1}{\sigma_{v}^{T}-1} \exp \left(-\frac{\sum_{k=2}^{T}\left(x_{k}-\alpha x_{k-1}\right)^{2}}{2 \sigma_{v}^{2}}\right) \frac{1}{\sigma_{v}^{v}} \exp \left(-\frac{\gamma_{0}}{2 \sigma_{v}^{2}}\right) \\
& =\mathcal{I G}\left(\sigma_{v}^{2} ; \frac{v_{0}+T-1}{2}, \frac{\gamma_{0}+\sum_{k=2}^{T}\left(x_{k}-\alpha x_{k-1}\right)^{2}}{2}\right)
\end{aligned}
$$

- We have

$$
\begin{aligned}
& p\left(\sigma_{v}^{2} \mid x_{1: T}, \alpha\right) \propto p\left(x_{1: T} \mid \alpha, \sigma_{v}^{2}\right) p\left(\sigma_{v}^{2}\right) \\
& \propto \frac{1}{\sigma_{v}^{T-1}} \exp \left(-\frac{\sum_{k=2}^{T}\left(x_{k}-\alpha x_{k-1}\right)^{2}}{2 \sigma_{v}^{2}}\right) \frac{1}{\sigma_{v}^{0}} \exp \left(-\frac{\gamma_{0}}{2 \sigma_{v}^{2}}\right) \\
& =\mathcal{I} \mathcal{G}\left(\sigma_{v}^{2} ; \frac{v_{0}+T-1}{2}, \frac{\gamma_{0}+\sum_{k=2}^{T}\left(x_{k}-\alpha x_{k-1}\right)^{2}}{2}\right)
\end{aligned}
$$

- We have

$$
\begin{aligned}
& p\left(\sigma_{w}^{2} \mid y_{1: T}, x_{1: T}\right) \propto p\left(y_{1: T} \mid x_{1: T}, \sigma_{w}^{2}\right) p\left(\sigma_{w}^{2}\right) \\
& \propto \frac{1}{\sigma_{w}^{T}} \exp \left(-\frac{\sum_{k=2}^{T}\left(y_{k}-x_{k}\right)^{2}}{2 \sigma_{w}^{2}}\right) \frac{1}{\sigma_{w}^{v}} \exp \left(-\frac{\gamma_{0}}{2 \sigma_{w}^{2}}\right) \\
& =\mathcal{I G}\left(\sigma_{w}^{2} ; \frac{v_{0}+T}{2}, \frac{\gamma_{0}+\sum_{k=1}^{T}\left(y_{k}-x_{k}\right)^{2}}{2}\right)
\end{aligned}
$$

- Finally we have

$$
\begin{aligned}
& p\left(\alpha \mid y_{1: T}, x_{1: T}, \sigma_{v}^{2}, \sigma_{v}^{2}\right)=p\left(\alpha \mid x_{1: T}, \sigma_{v}^{2}\right) \propto p\left(x_{1: T} \mid \alpha, \sigma_{v}^{2}\right) p(\alpha) \\
& \propto \frac{1}{\sigma_{v}^{T-1}} \exp \left(-\frac{\sum_{k=2}^{T}\left(x_{k}-\alpha x_{k-1}\right)^{2}}{2 \sigma_{v}^{2}}\right) \exp \left(-\frac{\alpha^{2}}{2 \sigma_{0}^{2}}\right) \\
& =\mathcal{N}\left(\alpha ; m_{\alpha}, \sigma_{\alpha}^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\frac{1}{\sigma_{\alpha}^{2}} & =\frac{1}{\sigma_{0}^{2}}+\frac{\sum_{k=1}^{T-1} x_{k}^{2}}{\sigma_{v}^{2}}, \\
m_{\alpha} & =\sigma_{\alpha}^{2}\left(\sum_{k=2}^{T} x_{k} x_{k-1}\right) .
\end{aligned}
$$





Figure: 100,000 samples after 10,000 burn in with $\alpha=0.9, \sigma_{w}=1$ and $\sigma_{v}=1$ for $T=100$. Approximations of $p\left(\alpha \mid y_{1: T}\right), p\left(\sigma_{w}^{2} \mid y_{1: T}\right)$ and $p\left(\sigma_{v}^{2} \mid y_{1: T}\right)$

- We have

$$
\begin{aligned}
& X_{n}=A X_{n-1}+V_{n}, \quad V_{n} \sim \mathcal{N}(0, \Sigma) \\
& Y_{n}=\tan ^{-1}\left(\frac{X_{n}^{1}}{X_{n}^{2}}\right)+W_{n}, \quad W_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

- We have

$$
\begin{aligned}
& X_{n}=A X_{n-1}+V_{n}, V_{n} \sim \mathcal{N}(0, \Sigma) \\
& Y_{n}=\tan ^{-1}\left(\frac{X_{n}^{1}}{X_{n}^{2}}\right)+W_{n}, W_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

- Assume for sake of simplicity that only $x_{1: T}$ are unknown, we want to estimate

$$
p\left(x_{1: T} \mid y_{1: T}\right) .
$$

- We sample from the full conditional distributions

$$
\begin{aligned}
p\left(x_{k} \mid y_{1: T}, x_{-k}\right) & \propto p\left(x_{k} \mid x_{-k}\right) g\left(y_{k} \mid x_{k}\right) \\
& \propto f\left(x_{k+1} \mid x_{k}\right) f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right) .
\end{aligned}
$$

- We sample from the full conditional distributions

$$
\begin{aligned}
p\left(x_{k} \mid y_{1: T}, x_{-k}\right) & \propto p\left(x_{k} \mid x_{-k}\right) g\left(y_{k} \mid x_{k}\right) \\
& \propto f\left(x_{k+1} \mid x_{k}\right) f\left(x_{k} \mid x_{k-1}\right) g\left(y_{k} \mid x_{k}\right) .
\end{aligned}
$$

- We have

$$
p\left(x_{k} \mid x_{-k}\right) \propto f\left(x_{k+1} \mid x_{k}\right) f\left(x_{k} \mid x_{k-1}\right)=\mathcal{N}\left(x_{k} ; m_{k}, \Sigma_{k}\right)
$$

where

$$
\begin{aligned}
\Sigma_{k}^{-1} & =\Sigma^{-1}+A^{\mathrm{T}} \Sigma^{-1} A \\
m_{k} & =\Sigma_{k}\left(\Sigma^{-1} A x_{k-1}+A^{\mathrm{T}} \Sigma^{-1} x_{k+1}\right)
\end{aligned}
$$

- To sample from

$$
p\left(x_{k} \mid y_{1: T}, x_{-k}\right) \propto p\left(x_{k} \mid x_{-k}\right) g\left(y_{k} \mid x_{k}\right)
$$

we can use rejection sampling as you can sample from $p\left(x_{k} \mid x_{-k}\right)$ and

$$
\begin{aligned}
g\left(y_{k} \mid x_{k}\right) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\left(y_{k}-\tan ^{-1}\left(\frac{x_{k}^{1}}{x_{k}^{2}}\right)\right)^{2} /\left(2 \sigma^{2}\right)\right) \\
& \leq \frac{1}{\sqrt{2 \pi} \sigma}
\end{aligned}
$$

- To sample from

$$
p\left(x_{k} \mid y_{1: T}, x_{-k}\right) \propto p\left(x_{k} \mid x_{-k}\right) g\left(y_{k} \mid x_{k}\right)
$$

we can use rejection sampling as you can sample from $p\left(x_{k} \mid x_{-k}\right)$ and

$$
\begin{aligned}
g\left(y_{k} \mid x_{k}\right) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\left(y_{k}-\tan ^{-1}\left(\frac{x_{k}^{1}}{x_{k}^{2}}\right)\right)^{2} /\left(2 \sigma^{2}\right)\right) \\
& \leq \frac{1}{\sqrt{2 \pi} \sigma}
\end{aligned}
$$

- Gibbs sampling can be implemented even for non-linear models

Stepwise RIS range


Figure: MCMC for state estimation using bearings-only-tracking data. Mean and credible intervals for $p\left(x_{n} \mid Y_{1: n}\right)$.

- We have

$$
\begin{aligned}
& X_{n}=\alpha X_{n-1}+\sigma V_{n} \text { where } V_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1) \\
& Y_{n}=\beta \exp \left(X_{n} / 2\right) W_{n} \text { where } W_{n} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)
\end{aligned}
$$

- We have

$$
\begin{aligned}
& X_{n}=\alpha X_{n-1}+\sigma V_{n} \text { where } V_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1) \\
& Y_{n}=\beta \exp \left(X_{n} / 2\right) W_{n} \text { where } W_{n} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)
\end{aligned}
$$

- Prior model: $\alpha \sim \mathcal{U}(-1,1), \sigma^{2} \sim \mathcal{I G}\left(\frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right)$ and $\beta \sim \mathcal{I G}\left(\frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right)$.
- We want to sample from

$$
\begin{aligned}
p\left(x_{k} \mid x_{-k}, y_{1: T}, \alpha, \sigma^{2}, \beta\right) \propto & f\left(x_{k} \mid x_{k-1}, \alpha, \sigma^{2}\right) \\
& \times f\left(x_{k+1} \mid x_{k}, \alpha, \sigma^{2}\right) g\left(y_{k} \mid x_{k}, \beta\right)
\end{aligned}
$$

where
$p\left(x_{k} \mid x_{-k}, \alpha, \sigma^{2}\right) \propto f\left(x_{k} \mid x_{k-1}, \alpha, \sigma^{2}\right) f\left(x_{k+1} \mid x_{k}, \alpha, \sigma^{2}\right)$

$$
=\mathcal{N}\left(x_{k} ; m_{k}=\frac{\alpha\left(x_{k-1}+x_{k+1}\right)}{1+\alpha^{2}}, \sigma_{k}^{2}=\frac{\sigma^{2}}{1+\alpha^{2}}\right) .
$$

- We want to sample from

$$
\begin{aligned}
p\left(x_{k} \mid x_{-k}, y_{1: T}, \alpha, \sigma^{2}, \beta\right) \propto & f\left(x_{k} \mid x_{k-1}, \alpha, \sigma^{2}\right) \\
& \times f\left(x_{k+1} \mid x_{k}, \alpha, \sigma^{2}\right) g\left(y_{k} \mid x_{k}, \beta\right)
\end{aligned}
$$

where

$$
\begin{aligned}
p\left(x_{k} \mid x_{-k}, \alpha, \sigma^{2}\right) & \propto f\left(x_{k} \mid x_{k-1}, \alpha, \sigma^{2}\right) f\left(x_{k+1} \mid x_{k}, \alpha, \sigma^{2}\right) \\
& =\mathcal{N}\left(x_{k} ; m_{k}=\frac{\alpha\left(x_{k-1}+x_{k+1}\right)}{1+\alpha^{2}}, \sigma_{k}^{2}=\frac{\sigma^{2}}{1+\alpha^{2}}\right) .
\end{aligned}
$$

- We have
$\log g\left(y_{k} \mid x_{k}, \beta\right) \equiv-\frac{x_{k}}{2}-\frac{y_{k}^{2}}{2 \beta^{2}} \exp \left(-x_{k}\right)$
$\leq-\frac{x_{k}}{2}-\frac{y_{k}^{2}}{2 \beta^{2}}\left(\exp \left(-m_{k}\right)\left(1+m_{k}\right)-x_{k} \exp \left(-m_{k}\right)\right) \quad[\operatorname{as} \exp (u) \geq 1+u$
$=\log g^{*}\left(y_{k} \mid x_{k}, \beta\right)$
- We propose to sample from $p\left(x_{k} \mid x_{k-1}, x_{k+1}, y_{k}, \alpha, \sigma^{2}, \beta\right)$ using rejection by sampling from where

$$
\begin{aligned}
q\left(x_{k}\right) & \propto p\left(x_{k} \mid x_{-k}, \alpha, \sigma^{2}\right) g^{*}\left(y_{k} \mid x_{k}, \beta\right) \\
& =\mathcal{N}\left(x_{k} ; m_{k}+\frac{\sigma_{k}^{2}}{2}\left[\frac{y_{k}^{2}}{\beta_{2}} \exp \left(-m_{k}^{2}\right)-1\right], \sigma_{k}^{2}\right) .
\end{aligned}
$$

- We propose to sample from $p\left(x_{k} \mid x_{k-1}, x_{k+1}, y_{k}, \alpha, \sigma^{2}, \beta\right)$ using rejection by sampling from where

$$
\begin{aligned}
q\left(x_{k}\right) & \propto p\left(x_{k} \mid x_{-k}, \alpha, \sigma^{2}\right) g^{*}\left(y_{k} \mid x_{k}, \beta\right) \\
& =\mathcal{N}\left(x_{k} ; m_{k}+\frac{\sigma_{k}^{2}}{2}\left[\frac{y_{k}^{2}}{\beta_{2}} \exp \left(-m_{k}^{2}\right)-1\right], \sigma_{k}^{2}\right) .
\end{aligned}
$$

- Then we accept the proposal with probability

$$
\frac{g\left(y_{k} \mid x_{k}, \beta\right)}{g^{*}\left(y_{k} \mid x_{k}, \beta\right)}
$$

- We propose to sample from $p\left(x_{k} \mid x_{k-1}, x_{k+1}, y_{k}, \alpha, \sigma^{2}, \beta\right)$ using rejection by sampling from where

$$
\begin{aligned}
q\left(x_{k}\right) & \propto p\left(x_{k} \mid x_{-k}, \alpha, \sigma^{2}\right) g^{*}\left(y_{k} \mid x_{k}, \beta\right) \\
& =\mathcal{N}\left(x_{k} ; m_{k}+\frac{\sigma_{k}^{2}}{2}\left[\frac{y_{k}^{2}}{\beta_{2}} \exp \left(-m_{k}^{2}\right)-1\right], \sigma_{k}^{2}\right) .
\end{aligned}
$$

- Then we accept the proposal with probability

$$
\frac{g\left(y_{k} \mid x_{k}, \beta\right)}{g^{*}\left(y_{k} \mid x_{k}, \beta\right)}
$$

- Update of the hypeparameters are straightforward.




Figure: UK Sterling/US dollar exhange rates from 1/10/81 to 28/6/85: 200,000 samples after 20,000 burn-in. Approximations of $p\left(\alpha \mid y_{1: T}\right), p\left(\sigma^{2} \mid y_{1: T}\right)$ and $p\left(\beta \mid y_{1: T}\right)$.

- These Gibbs sampling algorithms are simple but once more they are not very efficient as we sample typically $p\left(x_{k} \mid y_{1: T}, x_{-k}, \theta\right)$ then $p\left(\theta \mid y_{1: T}, x_{1: T}\right)$.
- These Gibbs sampling algorithms are simple but once more they are not very efficient as we sample typically $p\left(x_{k} \mid y_{1: T}, x_{-k}, \theta\right)$ then $p\left(\theta \mid y_{1: T}, x_{1: T}\right)$.
- We would like to be able to sample all the states variables jointly; i.e. sampling iteratively from $p\left(x_{1: T} \mid y_{1: T}, \theta\right)$ then $p\left(\theta \mid y_{\left.1: T, x_{1: T}\right)}\right.$.
- These Gibbs sampling algorithms are simple but once more they are not very efficient as we sample typically $p\left(x_{k} \mid y_{1: T}, x_{-k}, \theta\right)$ then $p\left(\theta \mid y_{1: T}, x_{1: T}\right)$.
- We would like to be able to sample all the states variables jointly; i.e. sampling iteratively from $p\left(x_{1: T} \mid y_{1: T}, \theta\right)$ then $p\left(\theta \mid y_{\left.1: T, x_{1: T}\right)}\right)$.
- Generally sampling exactly from $p\left(x_{1: T} \mid y_{1: T}, \theta\right)$ is impossible except for HMM and linear Gaussian models.
- All the models we have seen rely on the ability to sample from some full conditional distribution $\pi\left(\theta_{k} \mid \theta_{-k}\right)$.
- All the models we have seen rely on the ability to sample from some full conditional distribution $\pi\left(\theta_{k} \mid \theta_{-k}\right)$.
- Although it is possible in numerous models, there are also numerous models where one CANNOT do it.
- All the models we have seen rely on the ability to sample from some full conditional distribution $\pi\left(\theta_{k} \mid \theta_{-k}\right)$.
- Although it is possible in numerous models, there are also numerous models where one CANNOT do it.
- In such cases, alternative methods relying on the Metropolis-Hastings algorithm have to be developed.

