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Rejection Sampling and Importance Sampling are two general
methods but limited to problems of moderate dimensions.

Problem: We try to sample all the components of a potentially
high-dimensional parameter simultaneously/sequentially and we can
never correct for components already sampled.

A powerful class of methods is available to deal with such methods:
Markov chain Monte Carlo.
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Bayesian Model

Multiple failures in a nuclear plant

Pump i 1 2 3 4 5
# Failures pi 5 1 5 14 3
Times ti 94.32 15.72 62.88 125.76 5.24
Pump i 6 7 8 9 10

# Failures pi 19 1 1 4 22
Times ti 31.44 1.05 1.05 2.10 10.48

Model: Failures of the i�th pump follow a Poisson process with
parameter λi (1 � i � 10). For an observed time ti , the number of
failures pi is thus a Poisson P(λi ti ) random variable.

The unknown parameters consist of θ = (λ1, . . . ,λ10, β).
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Hierarchical model

λi j (α, β) iid� Ga(α, β) and β � Ga(γ, δ)

with α = 1.8 and γ = 0.01 and δ = 1.

The posterior distribution is proportional to

p (λ1:10, βj p1:10, t1:10)

∝
10

∏
i=1
f(λi ti )pi exp(�λi ti )λ

α�1
i exp(�βλi )gβ10αβγ�1 exp(�δβ)

∝
10

∏
i=1
fλpi+α�1

i exp(�(ti + β)λi )gβ10α+γ�1 exp(�δβ).

This multidimensional distribution is rather complex. It is not obvious
how the rejection method or importance sampling could be used in
this context.
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The conditionals have a familiar form

p (λ1:10j p1:10, t1:10, β) =
10

∏
i=1
p (λi j pi , ti , β)

where

λi j(β, ti , pi ) � Ga(pi + α, ti + β) for 1 � i � 10,

and

βj(λ1, . . . ,λ10) � Ga(γ+ 10α, δ+
10

∑
i=1

λi ).

Instead of directly sampling the vector θ = (λ1, . . . ,λ10, β) at once,
one could suggest sampling it iteratively, starting for example with
the λi�s for a given guess of β, followed by an update of β given the
new samples λ1, . . . ,λ10.
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My �rst Gibbs sampler

Given a sample, at iteration t, θt := (λt1, . . . ,λt10, β
t ) one could

proceed as follows at iteration t + 1,

1 λt+1i j(βt , ti , pi ) � Ga(pi + α, ti + βt ) for 1 � i � 10,
2 βt+1j(λt+11 , . . . ,λt+110 ) � Ga(γ+ 10α, δ+∑10

i=1 λt+1i ).

Instead of directly sampling in a space with 11 dimensions, one
samples in spaces of dimension 1.

Note that the deterministic version of such an algorithm where
sampling is replaced by maximization would not generally converge
towards the global maximum of the joint distribution.
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The structure of the algorithm calls for many questions:

Are we sampling from the desired joint distribution?
If yes, how many times should the iteration above be repeated?

The validity of the approach described here stems from the fact that
the sequence fθtg de�ned above is a Markov chain and some Markov
chains have very nice properties.
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Elements of Markov chains

Markov chain: A sequence of random variables fXn; n 2 Ng de�ned
on (X,B (X)) which satis�es the property, for any A 2 B (X)

P (Xn 2 AjX0, ...,Xn�1) = P (Xn 2 AjXn�1) .

and we will write

P (Xn 2 AjXn�1) = P (x ,A) =
Z
A
P (x , dy) .

Markov chain Monte Carlo: Given a target π, design a transition
kernel P such that asymptotically as n! ∞

1
N

N

∑
n=1

ϕ (Xn)!
Z

X
ϕ (x)π (x) dx and/or Xn � π.

It should be easy to simulate the Markov chain even if π is complex.
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Consider the autoregression for jαj < 1

Xn = αXn�1 + Vn, where Vn � N
�
0, σ2

�
then

P (x , dy) = P (x , y) dy =
1p
2πσ

exp

 
� (y � αx)2

2σ2

!
dx .

The limiting distribution is

π (x) = N
�
x ; 0,

σ2

1� α2

�
and satis�es Z

X
π (x)P (x , y) dx = π (y)

To sample from π, we could just sample the Markov chain and
asymptotically we would have Xn � π. [Obviously, in this case this is
useless because we can sample from π directly.]
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Graphically, consider 1000 independent Markov chains run in parallel.

We assume that the initial distribution of these Markov chains is
U[0,20]. So initially, the Markov chains samples are not distributed
according to π
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Figure: From top left to bottom right: histograms of 1000 independent Markov
chains with a normal distribution as target distribution as n increases.
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The target normal distribution seems to �attract� the distribution of
the samples and even to be a �xed point of the algorithm.

This is is what we wanted to achieve, i.e. it seems that we have
produced 1000 independent samples from the normal distribution.

In fact one can show that in many (all?) situations of interest it is
not necessary to run N Markov chains in parallel in order to obtain
1000 samples, but that one can consider a unique Markov chain, and
build the histogram from this single Markov chain by forming
histograms from one trajectory.
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Figure: Bimodal target distributions and simulated Markov chain
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The estimate of the target distribution, through the series of
histograms, improves with the number of iterations.

Assume that we have stored fXn, 1 � n � Ng for N large and wish to
estimate

R
X

ϕ(x)π(x)dx .

In the light of the numerical experiments, one can suggest the
estimator

1
N

N

∑
n=1

ϕ(Xn).

which is exactly the estimator that we would use if fXn, 1 � n � Ng
were independent.

In fact, it can be proved, under relatively mild conditions, that such
an estimator is consistent despite the fact that the samples are NOT
independent! Under additional conditions, a CLT also holds with a
rate of CV in 1/

p
N.

AD () February 2007 15 / 47



The estimate of the target distribution, through the series of
histograms, improves with the number of iterations.

Assume that we have stored fXn, 1 � n � Ng for N large and wish to
estimate

R
X

ϕ(x)π(x)dx .

In the light of the numerical experiments, one can suggest the
estimator

1
N

N

∑
n=1

ϕ(Xn).

which is exactly the estimator that we would use if fXn, 1 � n � Ng
were independent.

In fact, it can be proved, under relatively mild conditions, that such
an estimator is consistent despite the fact that the samples are NOT
independent! Under additional conditions, a CLT also holds with a
rate of CV in 1/

p
N.

AD () February 2007 15 / 47



The estimate of the target distribution, through the series of
histograms, improves with the number of iterations.

Assume that we have stored fXn, 1 � n � Ng for N large and wish to
estimate

R
X

ϕ(x)π(x)dx .

In the light of the numerical experiments, one can suggest the
estimator

1
N

N

∑
n=1

ϕ(Xn).

which is exactly the estimator that we would use if fXn, 1 � n � Ng
were independent.

In fact, it can be proved, under relatively mild conditions, that such
an estimator is consistent despite the fact that the samples are NOT
independent! Under additional conditions, a CLT also holds with a
rate of CV in 1/

p
N.

AD () February 2007 15 / 47



The estimate of the target distribution, through the series of
histograms, improves with the number of iterations.

Assume that we have stored fXn, 1 � n � Ng for N large and wish to
estimate

R
X

ϕ(x)π(x)dx .

In the light of the numerical experiments, one can suggest the
estimator

1
N

N

∑
n=1

ϕ(Xn).

which is exactly the estimator that we would use if fXn, 1 � n � Ng
were independent.

In fact, it can be proved, under relatively mild conditions, that such
an estimator is consistent despite the fact that the samples are NOT
independent! Under additional conditions, a CLT also holds with a
rate of CV in 1/

p
N.

AD () February 2007 15 / 47



Markov chains for Monte Carlo

To summarize, we are interested in Markov chains with transition kernel P
which have the following three important properties observed above:

The desired distribution π is a ��xed point�of the algorithm or, in
more appropriate terms, an invariant distribution of the Markov chain,
i.e.

R
X

π(x)P(x , y)dx = π(y) .

The successive distributions of the Markov chains converge towards π.

The estimator 1
N ∑N

n=1 ϕ(Xn) converges towards Eπ(ϕ(X )) and
asymptotically Xn � π
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Given π (x), there is an in�nite number of kernels P (x , y) which
admits π (x) as their invariant distribution.

The �art�of MCMC consists of coming up with good ones.

Convergence is ensured under very weak assumptions; namely
irreducibility and aperiodicity.

It is usually very easy to establish that an MCMC sampler converges
towards π but very di¢ cult to obtain rates of convergence.
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Two component Gibbs sampler

Consider the target distribution π (θ) such that θ =
�
θ1, θ2

�
. Then

the 2 component Gibbs sampler proceeds as follows.

Initialization: Select deterministically or randomly θ0 =
�
θ10, θ

2
0

�
.

Iteration i ; i � 1

Sample θ1i � π
�

θ1
��� θ2i�1

�
.

Sample θ2i � π
�

θ2
��� θ1i

�
.

Sampling from these conditional is often feasible even when sampling
from the joint is impossible (e.g. nuclear pump data).
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Clearly
��

θ1i , θ
2
i

�	
is a Markov chain and its transition kernel is

P
��

θ1, θ2
�
,
�eθ1,eθ2�� = π

�eθ1��� θ2
�

π
�eθ2��� eθ1� .

Then
R R

π
�
θ1, θ2

�
P
��

θ1, θ2
�
,
�eθ1,eθ2�� dθ1dθ2 satis�es

Z Z
π
�
θ1, θ2

�
π
�eθ1��� θ2
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π
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Irreducibility

This does not ensure that the Gibbs sampler does converge towards
the invariant distribution!

Additionally it is required to ensure irreducibility: loosely speaking the
Markov chain can move to any set A such that π (A) > 0 for
(almost) any starting point.

This ensures that

1
N

N

∑
n=1

ϕ
�
θ1n, θ

2
n

�
!
Z

ϕ
�
θ1, θ2

�
π
�
θ1, θ2

�
dθ1dθ2

but NOT that asymptotically
�
θ1n, θ

2
n

�
� π.
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Figure: A distribution that can lead to a reducible Gibbs sampler.
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Aperiodicity

Consider a simple example where X = f1, 2g and
P (1, 2) = P (2, 1) = 1. Clearly the invariant distribution is given by
π (1) = π (2) = 1

2 .

However, we know that if the chain starts in X0 = 1, then X2n = 1
and X2n+1 = 0 for any n.

We have
1
N

N

∑
n=1

ϕ (Xn)!
Z

ϕ (x)π (x) dx

but clearly Xn is NOT distributed according to π.

You need to make sure that you do NOT explore the space in a
periodic way to ensure that Xn � π asymptotically.
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Figure: Even when irreducibility and aperiodicity are ensured, the Gibbs sampler
can still converge very slowly.
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Deterministic Scan Gibbs Sampler

If θ = (θ1, ..., θp) where p > 2, the Gibbs sampling strategy still
applies.

Initialization: Select deterministically or randomly θ0 =
�
θ10, ..., θ

p
0

�
.

Iteration i ; i � 1:

For k = 1 : p

Sample θki � π
�

θk
��� θ�ki

�
where θ�ki =

�
θ1i , ..., θ

k�1
i , θk+1i�1 , ..., θ

p
i�1

�
.
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Random Scan Gibbs Sampler

Initialization: Select deterministically or randomly θ0 =
�
θ10, ..., θ

p
0

�
.

Iteration i ; i � 1:

Sample K � Uf1,...,pg.
Set θ�Ki = θ�Ki�1.

Sample θKi � π
�

θK
��� θ�Ki

�
where

θ�Ki =
�

θ1i , ..., θ
K�1
i , θK+1i , ..., θpi

�
.
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Tricks of the trade

Try to have as few �blocks�as possible.

Put the most correlated variables in the same block.

If necessary, reparametrize the model to achieve this.

Integrate analytically as many variables as possible: pretty algorithms
can be much more ine¢ cient than ugly algorithms.

There is no general result telling strategy A is better than strategy B
in all cases: you need experience.
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Application to Simulation of Fractal Images

Consider a 2D black and white �target�image. We de�ne an
distribution ν which assigns 1/P mass on each black point and zero
on white points where P is the number of black points.

Now we consider the following simple Markov process on R2 with

P (x , y) =
k

∑
i=1
wi δAi x+bi (y)

and we select fwi ,Ai , big such that P (x , dy) has an invariant
distribution π which is an approximation of ν.
To �nd fwi ,Ai , big, we writeZ

π (x)P (x , y) f (y) dxdy =
k

∑
i=1
wi
Z
f (Aix + bi )π (x) dx

=
Z
f (x)π (x) dx �

Z
f (x) ν (x) dx

and solve approximately the equations for some functions f (linear or
low order polynoms).
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Figure: Fractal image generated using Iterated random functions with k = 2 and
N = 10000 samples
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Gibbs Sampler for Bayesian Variable Selection

We select the following model

Y =
p

∑
i=1

βiXi + σV where V � N (0, 1)

where we assume IG
�
σ2; ν0

2 ,
γ0
2

�
and for α2 << 1

βi �
1
2
N
�
0, α2δ2σ2

�
+
1
2
N
�
0, δ2σ2

�

We introduce a latent variable γi 2 f0, 1g such that

Pr (γi = 0) = Pr (γi = 1) =
1
2 ,

βi j γi = 0 � N
�
0, α2δ2σ2

�
, βi j γi = 1 � N

�
0, δ2σ2

�
.
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We have parameters
�

β1:p ,γ1:p , σ
2
�
and observe D = fxi , yigni=1.

A potential Gibbs sampler consists of sampling iteratively from
p
�

β1:p

���D,γ1:p , σ
2
�
(Gaussian), p

�
σ2
��D,γ1:p , β1:p

�
(inverse-Gamma) and p

�
γ1:p

��D, β1:p , σ
2
�
.

In particular

p
�

γ1:p
��D, β1:p , σ

2
�
=

p

∏
i=1
p
�

γi j βi , σ2
�

and

p
�

γi = 1j βi , σ2
�
=

1p
2πδσ

exp
�
� β2i
2δ2σ2

�
1p
2πδσ

exp
�
� β2i
2δ2σ2

�
+ 1p

2παδσ
exp

�
� β2i
2α2δ2σ2

� .
The Gibbs sampler becomes reducible as α goes to zero.
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This is the result of bad modelling and bad algorithm. You would like
to put α ' 0 and write

Y =
p

∑
i=1

γi βiXi + σV where V � N (0, 1)

where γi = 1 if Xi is included or γi = 0 otherwise. However this
suggests that βi is de�ned even when γi = 0.

A neater way to write such models is to write

Y = ∑
fi :γi=1g

βiXi + σV = βTγXγ + σV

where, for a vector γ =
�
γ1, ...,γp

�
, βγ = fβi : γi = 1g ,

Xγ = fXi : γi = 1g and nγ = ∑p
i=1 γi .

Prior distributions

πγ

�
βγ, σ

2
�
= N

�
βγ; 0, δ

2σ2Inγ

�
IG
�

σ2;
ν0
2
,

γ0
2

�
and π (γ) = ∏p

i=1 π (γi ) = 2
�p .
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We are interested in sampling from the trans-dimensional distribution
π
�

γ, βγ, σ
2
���D�.

However, we know that

π
�

γ, βγ, σ
2
���D� = π (γjD)π

�
βγ, σ

2
���D,γ�

where
π (γjD) ∝ π (D j γ)π (γ)

and
π (D j γ) =

Z
π
�
D, βγ, σ

2
��� γ
�
dβγdσ2.
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π (γjD) is a discrete probability distribution with 2p potential values.
We can use the Gibbs sampler to sample from it.

Initialization: Select deterministically or randomly γ0 =
�
γ10, ...,γ

p
0

�
.

Iteration i ; i � 1:

For k = 1 : p

Sample γki � π
�

γk
��D ,γ�ki �

where

γ�ki =
�

γ1i , ...,γ
k�1
i ,γk+1i�1 , ...,γ

p
i�1

�
.

Optional step: Sample
�

βγ,i , σ
2
i

�
� π

�
βγ, σ

2
���D,γ�.
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This very simple sampler is much more e¢ cient than the previous one.

However, it can also mix very slowly because the components are
updated one at a time.

Updating correlated components together would increase signi�cantly
the convergence speed of the algorithm at the cost of an increased
complexity.
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Finite Mixture Models

Figure: Velocity (km/sc) of galaxies in the Corona Borealis Region
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Consider the case where one has n data Xi

Xi
i.i.d�

K

∑
k=1

pkN
�
µk , σ

2
k

�
where K is �xed and θ =

�
µk , σ

2
k , pk

	
k=1,...,K are unknown.

A standard approach consists of �nding a local maximum of the
log-likelihood

log f (x1:n j θ) =
n

∑
i=1
log f (xi j θ)

where f (x j θ) =
K

∑
k=1

pkp
2πσk

exp

 
� (x � µk )

2

2σ2k

!
.

Problem: The likelihood is unbounded!
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Bayesian Model

We consider the Bayesian framework where we set priors

π (θ) = π (p1, ..., pK )
K

∏
k=1

π
�
µk , σ

2
k

�
.

We use the following (conditionally conjugate) priors where

(p1, ..., pK ) � D (γ1, ...,γK ) .

µk j σ2k � N
�

αk ,
σ2k
λk

�
, σ2k � IG

�
λk + 3
2

,
βk
2

�
.

It is impossible to use the Gibbs sampler to sample from π (θj x1:n) .
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Latent Variables

Like in the EM, we can introduce the missing data Zi 2 f1, ...,Kg
such that

Xi jZi � N
�

µZi , σ
2
Zi

�
and

Pr (Zi = k) = pk .

The �complete� likelihood admits a simple form

π (x1:n, z1:n j θ) =
n

∏
k=1

f (xi j θ, zi )π (zi j θ) .

Thus we propose to sample the joint posterior π (θ, z1:n j y1:n) using
the Gibbs sampler; that is sampling iteratively from π ( θj y1:n, z1:n)
and π (z1:n j y1:n, θ).
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Gibbs Sampler for Finite Mixture Distributions

We have

π (z1:n j θ, x1:n) =
n

∏
i=1

π (zi j θ, xi )

where

π (zi = j j θ, xi ) =
f (xi j θ, j) pj

∑K
k=1 f (xi j θ, k) pk

.

We have

π ( θj z1:n, x1:n) = π (p1, ..., pK j z1:n)
K

∏
k=1

π
�

µk , σ
2
k

�� z1:n, x1:n
�
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Introducing

nk =
n

∑
i=1
1fkg (zi ) , nkxk =

n

∑
i=1
xi1fkg (zi ) , s

2
k =

n

∑
i=1
(xi � xk )2 1fkg (zi ) .

We have the full conditionals

p1, ..., pK j z1:n � D (γ1 + n1, ...,γK + nK ) ,
σ2k
�� z1:n, x1:n � IG

�
λk+nk+3

2 ,
λk s2k+βk+s

2
k�(λk+nk )

�1(λk αk+nk x k )
2

2

�
,

µk j σ2k , z1:n, x1:n � N
�

λk αk+nk x k
λk+nk

,
σ2k

λk+nk

�
.

It is thus trivial to implement the Gibbs sampler.
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Simulation Results

Consider some n = 100 simulated data

Xi � 0.3N (�2, 1) + 0.7N (2, 1) ,

i.e. we have well-separated components.

We set γk = 1, αk = 0, λk = 0.01, βk = 0.01 and run the Gibbs
sampler for 10000 iterations.

We obtain bE (µ1j x1:n) = 2.17, bE (µ2j x1:n) = �1.89,bE �σ21
�� x1:n

�
= 0.92, bE �σ22

�� x1:n
�
= 1.3, bE (p1j x1:n) = 0.32 andbE (p2j x1:n) = 0.68.

Increasing the number of iterations to 100000, I obtain similar results.
Any good?
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Your algorithm does not work! Indeed we know that

E (µ1j x1:n) = E (µ2j x1:n) , E
�

σ21
�� x1:n

�
= E

�
σ22
�� x1:n

�
,

E (p1j x1:n) = E (p2j x1:n) = 0.5.

This follows because both the prior and likelihood are exchangeable,
that is

π
�
p1, ..., pK ,µ1, ..., µK , σ

2
1, ..., σ

2
K

�� x1:n
�

= π
�
pζ(1), ..., pζ(K ),µζ(1), ..., µζ(K ), σ

2
ζ(1), ..., σ

2
ζ(K )

��� x1:n

�
for any permutation ζ of the labels.

Clearly, conditional expectations are not useful in this case.
) This does NOT mean that your Bayesian model is useless.
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One can select another point estimates; e.g. the MAP estimate

θMAP = arg max π ( θj x1:n) .

Alternatively, constraints can be set on the priors; e.g. we ensure that

µ1 � µ2 � ... � µP

However, this can lead to �strange� shapes of the posteriors and is
not natural in most cases.
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One way to improve the algorithm consists of randomly permuting the
labels (Fruwirth-Schnatter, JASA, 2002)

) Realistic only if K is moderate because there are K ! permutations.

Alternative ways to improve the algorithm include

Not introducing the latent variables and using sampling strategies
di¤erent from Gibbs.
Integrating out θ as the marginal distribution π ( z1:n j x1:n) can be
computed analytically (for conjugate priors)
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Initialization: Select deterministically or randomly z (0)1:n .

Iteration i ; i � 1:

For k = 1 : n, sample Z (i )k � π
�
zk j x1:n , z

(i )
�k

�
where

z (i )�k =
�
z (i )1 , ..., z

(i )
k�1, z

(i�1)
k+1 , ..., z

(i�1)
n

�
.

Sample θ(i ) � π
�

θj x1:n , z
(i )
1:n

�
.
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Figure: Predictive distribution for the galaxy dataset.
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Discussion

The Gibbs sampler is a generic tool to sample approximately from
high-dimensional distributions.

Each time you face a problem, you need to think hard about it to
design an e¢ cient algorithm.

Except the choice of the partitions of parameters, the Gibbs sampler
is parameter free; this does not mean it is e¢ cient.
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