CPSC 535

Gibbs Sampling

AD

February 2007

- Rejection Sampling and Importance Sampling are two general methods but limited to problems of moderate dimensions.
- Rejection Sampling and Importance Sampling are two general methods but limited to problems of moderate dimensions.
- Problem: We try to sample all the components of a potentially high-dimensional parameter simultaneously/sequentially and we can never correct for components already sampled.
- Rejection Sampling and Importance Sampling are two general methods but limited to problems of moderate dimensions.
- Problem: We try to sample all the components of a potentially high-dimensional parameter simultaneously/sequentially and we can never correct for components already sampled.
- A powerful class of methods is available to deal with such methods: Markov chain Monte Carlo.

Bayesian Model

- Multiple failures in a nuclear plant

Pump i	1	2	3	4	5
\# Failures p_{i}	5	1	5	14	3
Times t_{i}	94.32	15.72	62.88	125.76	5.24
Pump i	6	7	8	9	10
\# Failures p_{i}	19	1	1	4	22
Times t_{i}	31.44	1.05	1.05	2.10	10.48

Bayesian Model

- Multiple failures in a nuclear plant

Pump i	1	2	3	4	5
\# Failures p_{i}	5	1	5	14	3
Times t_{i}	94.32	15.72	62.88	125.76	5.24
Pump i	6	7	8	9	10
\# Failures p_{i}	19	1	1	4	22
Times t_{i}	31.44	1.05	1.05	2.10	10.48

- Model: Failures of the i-th pump follow a Poisson process with parameter $\lambda_{i}(1 \leq i \leq 10)$. For an observed time t_{i}, the number of failures p_{i} is thus a Poisson $\mathcal{P}\left(\lambda_{i} t_{i}\right)$ random variable.

Bayesian Model

- Multiple failures in a nuclear plant

Pump i	1	2	3	4	5
\# Failures p_{i}	5	1	5	14	3
Times t_{i}	94.32	15.72	62.88	125.76	5.24
Pump i	6	7	8	9	10
\# Failures p_{i}	19	1	1	4	22
Times t_{i}	31.44	1.05	1.05	2.10	10.48

- Model: Failures of the i-th pump follow a Poisson process with parameter $\lambda_{i}(1 \leq i \leq 10)$. For an observed time t_{i}, the number of failures p_{i} is thus a Poisson $\mathcal{P}\left(\lambda_{i} t_{i}\right)$ random variable.
- The unknown parameters consist of $\theta=\left(\lambda_{1}, \ldots, \lambda_{10}, \beta\right)$.
- Hierarchical model

$$
\lambda_{i} \mid(\alpha, \beta) \stackrel{\text { iid }}{\sim} \mathcal{G} a(\alpha, \beta) \text { and } \beta \sim \mathcal{G} a(\gamma, \delta)
$$

with $\alpha=1.8$ and $\gamma=0.01$ and $\delta=1$.

- Hierarchical model

$$
\lambda_{i} \mid(\alpha, \beta) \stackrel{\mathrm{iid}}{\sim} \mathcal{G} a(\alpha, \beta) \text { and } \beta \sim \mathcal{G} a(\gamma, \delta)
$$

with $\alpha=1.8$ and $\gamma=0.01$ and $\delta=1$.

- The posterior distribution is proportional to

$$
\begin{aligned}
& p\left(\lambda_{1: 10}, \beta \mid p_{1: 10}, t_{1: 10}\right) \\
\propto & \prod_{i=1}^{10}\left\{\left(\lambda_{i} t_{i}\right)^{p_{i}} \exp \left(-\lambda_{i} t_{i}\right) \lambda_{i}^{\alpha-1} \exp \left(-\beta \lambda_{i}\right)\right\} \beta^{10 \alpha} \beta^{\gamma-1} \exp (-\delta \beta) \\
\propto & \prod_{i=1}^{10}\left\{\lambda_{i}^{p_{i}+\alpha-1} \exp \left(-\left(t_{i}+\beta\right) \lambda_{i}\right)\right\} \beta^{10 \alpha+\gamma-1} \exp (-\delta \beta) .
\end{aligned}
$$

- Hierarchical model

$$
\lambda_{i} \mid(\alpha, \beta) \stackrel{\mathrm{iid}}{\sim} \mathcal{G} a(\alpha, \beta) \text { and } \beta \sim \mathcal{G} a(\gamma, \delta)
$$

with $\alpha=1.8$ and $\gamma=0.01$ and $\delta=1$.

- The posterior distribution is proportional to

$$
\begin{aligned}
& p\left(\lambda_{1: 10}, \beta \mid p_{1: 10}, t_{1: 10}\right) \\
\propto & \prod_{i=1}^{10}\left\{\left(\lambda_{i} t_{i}\right)^{p_{i}} \exp \left(-\lambda_{i} t_{i}\right) \lambda_{i}^{\alpha-1} \exp \left(-\beta \lambda_{i}\right)\right\} \beta^{10 \alpha} \beta^{\gamma-1} \exp (-\delta \beta) \\
\propto & \prod_{i=1}^{10}\left\{\lambda_{i}^{p_{i}+\alpha-1} \exp \left(-\left(t_{i}+\beta\right) \lambda_{i}\right)\right\} \beta^{10 \alpha+\gamma-1} \exp (-\delta \beta) .
\end{aligned}
$$

- This multidimensional distribution is rather complex. It is not obvious how the rejection method or importance sampling could be used in this context.
- The conditionals have a familiar form

$$
p\left(\lambda_{1: 10} \mid p_{1: 10}, t_{1: 10}, \beta\right)=\prod_{i=1}^{10} p\left(\lambda_{i} \mid p_{i}, t_{i}, \beta\right)
$$

where

$$
\lambda_{i} \mid\left(\beta, t_{i}, p_{i}\right) \sim \mathcal{G} a\left(p_{i}+\alpha, t_{i}+\beta\right) \text { for } 1 \leq i \leq 10
$$

and

$$
\beta \mid\left(\lambda_{1}, \ldots, \lambda_{10}\right) \sim \mathcal{G} a\left(\gamma+10 \alpha, \delta+\sum_{i=1}^{10} \lambda_{i}\right)
$$

- The conditionals have a familiar form

$$
p\left(\lambda_{1: 10} \mid p_{1: 10}, t_{1: 10}, \beta\right)=\prod_{i=1}^{10} p\left(\lambda_{i} \mid p_{i}, t_{i}, \beta\right)
$$

where

$$
\lambda_{i} \mid\left(\beta, t_{i}, p_{i}\right) \sim \mathcal{G} a\left(p_{i}+\alpha, t_{i}+\beta\right) \text { for } 1 \leq i \leq 10
$$

and

$$
\beta \mid\left(\lambda_{1}, \ldots, \lambda_{10}\right) \sim \mathcal{G} a\left(\gamma+10 \alpha, \delta+\sum_{i=1}^{10} \lambda_{i}\right)
$$

- Instead of directly sampling the vector $\theta=\left(\lambda_{1}, \ldots, \lambda_{10}, \beta\right)$ at once, one could suggest sampling it iteratively, starting for example with the λ_{i} 's for a given guess of β, followed by an update of β given the new samples $\lambda_{1}, \ldots, \lambda_{10}$.

My first Gibbs sampler

- Given a sample, at iteration $t, \theta^{t}:=\left(\lambda_{1}^{t}, \ldots, \lambda_{10}^{t}, \beta^{t}\right)$ one could proceed as follows at iteration $t+1$,
(1) $\lambda_{i}^{t+1} \mid\left(\beta^{t}, t_{i}, p_{i}\right) \sim \mathcal{G} a\left(p_{i}+\alpha, t_{i}+\beta^{t}\right)$ for $1 \leq i \leq 10$,
(2) $\beta^{t+1} \mid\left(\lambda_{1}^{t+1}, \ldots, \lambda_{10}^{t+1}\right) \sim \mathcal{G} a\left(\gamma+10 \alpha, \delta+\sum_{i=1}^{10} \lambda_{i}^{t+1}\right)$.

My first Gibbs sampler

- Given a sample, at iteration $t, \theta^{t}:=\left(\lambda_{1}^{t}, \ldots, \lambda_{10}^{t}, \beta^{t}\right)$ one could proceed as follows at iteration $t+1$,
(1) $\lambda_{i}^{t+1} \mid\left(\beta^{t}, t_{i}, p_{i}\right) \sim \mathcal{G} a\left(p_{i}+\alpha, t_{i}+\beta^{t}\right)$ for $1 \leq i \leq 10$,
(2) $\beta^{t+1} \mid\left(\lambda_{1}^{t+1}, \ldots, \lambda_{10}^{t+1}\right) \sim \mathcal{G} a\left(\gamma+10 \alpha, \delta+\sum_{i=1}^{10} \lambda_{i}^{t+1}\right)$.
- Instead of directly sampling in a space with 11 dimensions, one samples in spaces of dimension 1.

My first Gibbs sampler

- Given a sample, at iteration $t, \theta^{t}:=\left(\lambda_{1}^{t}, \ldots, \lambda_{10}^{t}, \beta^{t}\right)$ one could proceed as follows at iteration $t+1$,
(1) $\lambda_{i}^{t+1} \mid\left(\beta^{t}, t_{i}, p_{i}\right) \sim \mathcal{G} a\left(p_{i}+\alpha, t_{i}+\beta^{t}\right)$ for $1 \leq i \leq 10$,
(2) $\beta^{t+1} \mid\left(\lambda_{1}^{t+1}, \ldots, \lambda_{10}^{t+1}\right) \sim \mathcal{G} a\left(\gamma+10 \alpha, \delta+\sum_{i=1}^{10} \lambda_{i}^{t+1}\right)$.
- Instead of directly sampling in a space with 11 dimensions, one samples in spaces of dimension 1.
- Note that the deterministic version of such an algorithm where sampling is replaced by maximization would not generally converge towards the global maximum of the joint distribution.
- The structure of the algorithm calls for many questions:
- The structure of the algorithm calls for many questions:
- Are we sampling from the desired joint distribution?
- The structure of the algorithm calls for many questions:
- Are we sampling from the desired joint distribution?
- If yes, how many times should the iteration above be repeated?
- The structure of the algorithm calls for many questions:
- Are we sampling from the desired joint distribution?
- If yes, how many times should the iteration above be repeated?
- The validity of the approach described here stems from the fact that the sequence $\left\{\theta^{t}\right\}$ defined above is a Markov chain and some Markov chains have very nice properties.

Elements of Markov chains

- Markov chain: A sequence of random variables $\left\{X_{n} ; n \in \mathbb{N}\right\}$ defined on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ which satisfies the property, for any $A \in \mathcal{B}(\mathbb{X})$

$$
\mathbb{P}\left(X_{n} \in A \mid X_{0}, \ldots, X_{n-1}\right)=\mathbb{P}\left(X_{n} \in A \mid X_{n-1}\right)
$$

and we will write

$$
\mathbb{P}\left(X_{n} \in A \mid X_{n-1}\right)=P(x, A)=\int_{A} P(x, d y)
$$

Elements of Markov chains

- Markov chain: A sequence of random variables $\left\{X_{n} ; n \in \mathbb{N}\right\}$ defined on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ which satisfies the property, for any $A \in \mathcal{B}(\mathbb{X})$

$$
\mathbb{P}\left(X_{n} \in A \mid X_{0}, \ldots, X_{n-1}\right)=\mathbb{P}\left(X_{n} \in A \mid X_{n-1}\right)
$$

and we will write

$$
\mathbb{P}\left(X_{n} \in A \mid X_{n-1}\right)=P(x, A)=\int_{A} P(x, d y)
$$

- Markov chain Monte Carlo: Given a target π, design a transition kernel P such that asymptotically as $n \rightarrow \infty$

$$
\frac{1}{N} \sum_{n=1}^{N} \varphi\left(X_{n}\right) \rightarrow \int_{\mathbb{X}} \varphi(x) \pi(x) d x \text { and/or } X_{n} \sim \pi
$$

Elements of Markov chains

- Markov chain: A sequence of random variables $\left\{X_{n} ; n \in \mathbb{N}\right\}$ defined on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ which satisfies the property, for any $A \in \mathcal{B}(\mathbb{X})$

$$
\mathbb{P}\left(X_{n} \in A \mid X_{0}, \ldots, X_{n-1}\right)=\mathbb{P}\left(X_{n} \in A \mid X_{n-1}\right)
$$

and we will write

$$
\mathbb{P}\left(X_{n} \in A \mid X_{n-1}\right)=P(x, A)=\int_{A} P(x, d y)
$$

- Markov chain Monte Carlo: Given a target π, design a transition kernel P such that asymptotically as $n \rightarrow \infty$

$$
\frac{1}{N} \sum_{n=1}^{N} \varphi\left(X_{n}\right) \rightarrow \int_{\mathbb{X}} \varphi(x) \pi(x) d x \text { and/or } X_{n} \sim \pi
$$

- It should be easy to simulate the Markov chain even if π is complex.
- Consider the autoregression for $|\alpha|<1$

$$
X_{n}=\alpha X_{n-1}+V_{n}, \text { where } V_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

then

$$
P(x, d y)=P(x, y) d y=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(y-\alpha x)^{2}}{2 \sigma^{2}}\right) d x
$$

- Consider the autoregression for $|\alpha|<1$

$$
X_{n}=\alpha X_{n-1}+V_{n}, \text { where } V_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

then

$$
P(x, d y)=P(x, y) d y=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(y-\alpha x)^{2}}{2 \sigma^{2}}\right) d x
$$

- The limiting distribution is

$$
\pi(x)=\mathcal{N}\left(x ; 0, \frac{\sigma^{2}}{1-\alpha^{2}}\right)
$$

and satisfies

$$
\int_{\mathbb{X}} \pi(x) P(x, y) d x=\pi(y)
$$

- Consider the autoregression for $|\alpha|<1$

$$
X_{n}=\alpha X_{n-1}+V_{n}, \text { where } V_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

then

$$
P(x, d y)=P(x, y) d y=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(y-\alpha x)^{2}}{2 \sigma^{2}}\right) d x
$$

- The limiting distribution is

$$
\pi(x)=\mathcal{N}\left(x ; 0, \frac{\sigma^{2}}{1-\alpha^{2}}\right)
$$

and satisfies

$$
\int_{\mathbb{X}} \pi(x) P(x, y) d x=\pi(y)
$$

- To sample from π, we could just sample the Markov chain and asymptotically we would have $X_{n} \sim \pi$. [Obviously, in this case this is useless because we can sample from π directly.]
- Graphically, consider 1000 independent Markov chains run in parallel.
- Graphically, consider 1000 independent Markov chains run in parallel.
- We assume that the initial distribution of these Markov chains is $\mathcal{U}_{[0,20]}$. So initially, the Markov chains samples are not distributed according to π

Figure: From top left to bottom right: histograms of 1000 independent Markov chains with a normal distribution as target distribution as n increases.

- The target normal distribution seems to "attract" the distribution of the samples and even to be a fixed point of the algorithm.
- The target normal distribution seems to "attract" the distribution of the samples and even to be a fixed point of the algorithm.
- This is is what we wanted to achieve, i.e. it seems that we have produced 1000 independent samples from the normal distribution.
- The target normal distribution seems to "attract" the distribution of the samples and even to be a fixed point of the algorithm.
- This is is what we wanted to achieve, i.e. it seems that we have produced 1000 independent samples from the normal distribution.
- In fact one can show that in many (all?) situations of interest it is not necessary to run N Markov chains in parallel in order to obtain 1000 samples, but that one can consider a unique Markov chain, and build the histogram from this single Markov chain by forming histograms from one trajectory.

Figure: Bimodal target distributions and simulated Markov chain

Figure: Bimodal target distributions and simulated Markov chain

- The estimate of the target distribution, through the series of histograms, improves with the number of iterations.
- The estimate of the target distribution, through the series of histograms, improves with the number of iterations.
- Assume that we have stored $\left\{X_{n}, 1 \leq n \leq N\right\}$ for N large and wish to estimate $\int_{\mathbb{X}} \varphi(x) \pi(x) d x$.
- The estimate of the target distribution, through the series of histograms, improves with the number of iterations.
- Assume that we have stored $\left\{X_{n}, 1 \leq n \leq N\right\}$ for N large and wish to estimate $\int_{\mathbb{X}} \varphi(x) \pi(x) d x$.
- In the light of the numerical experiments, one can suggest the estimator

$$
\frac{1}{N} \sum_{n=1}^{N} \varphi\left(X_{n}\right)
$$

which is exactly the estimator that we would use if $\left\{X_{n}, 1 \leq n \leq N\right\}$ were independent.

- The estimate of the target distribution, through the series of histograms, improves with the number of iterations.
- Assume that we have stored $\left\{X_{n}, 1 \leq n \leq N\right\}$ for N large and wish to estimate $\int_{\mathbb{X}} \varphi(x) \pi(x) d x$.
- In the light of the numerical experiments, one can suggest the estimator

$$
\frac{1}{N} \sum_{n=1}^{N} \varphi\left(X_{n}\right)
$$

which is exactly the estimator that we would use if $\left\{X_{n}, 1 \leq n \leq N\right\}$ were independent.

- In fact, it can be proved, under relatively mild conditions, that such an estimator is consistent despite the fact that the samples are NOT independent! Under additional conditions, a CLT also holds with a rate of CV in $1 / \sqrt{N}$.

Markov chains for Monte Carlo

To summarize, we are interested in Markov chains with transition kernel P which have the following three important properties observed above:

- The desired distribution π is a "fixed point" of the algorithm or, in more appropriate terms, an invariant distribution of the Markov chain, i.e. $\int_{\mathbb{X}} \pi(x) P(x, y) d x=\pi(y)$.

Markov chains for Monte Carlo

To summarize, we are interested in Markov chains with transition kernel P which have the following three important properties observed above:

- The desired distribution π is a "fixed point" of the algorithm or, in more appropriate terms, an invariant distribution of the Markov chain, i.e. $\int_{\mathbb{X}} \pi(x) P(x, y) d x=\pi(y)$.
- The successive distributions of the Markov chains converge towards π.

Markov chains for Monte Carlo

To summarize, we are interested in Markov chains with transition kernel P which have the following three important properties observed above:

- The desired distribution π is a "fixed point" of the algorithm or, in more appropriate terms, an invariant distribution of the Markov chain, i.e. $\int_{\mathbb{X}} \pi(x) P(x, y) d x=\pi(y)$.
- The successive distributions of the Markov chains converge towards π.
- The estimator $\frac{1}{N} \sum_{n=1}^{N} \varphi\left(X_{n}\right)$ converges towards $\mathbb{E}_{\pi}(\varphi(X))$ and asymptotically $X_{n} \sim \pi$
- Given $\pi(x)$, there is an infinite number of kernels $P(x, y)$ which admits $\pi(x)$ as their invariant distribution.
- Given $\pi(x)$, there is an infinite number of kernels $P(x, y)$ which admits $\pi(x)$ as their invariant distribution.
- The "art" of MCMC consists of coming up with good ones.
- Given $\pi(x)$, there is an infinite number of kernels $P(x, y)$ which admits $\pi(x)$ as their invariant distribution.
- The "art" of MCMC consists of coming up with good ones.
- Convergence is ensured under very weak assumptions; namely irreducibility and aperiodicity.
- Given $\pi(x)$, there is an infinite number of kernels $P(x, y)$ which admits $\pi(x)$ as their invariant distribution.
- The "art" of MCMC consists of coming up with good ones.
- Convergence is ensured under very weak assumptions; namely irreducibility and aperiodicity.
- It is usually very easy to establish that an MCMC sampler converges towards π but very difficult to obtain rates of convergence.

Two component Gibbs sampler

- Consider the target distribution $\pi(\theta)$ such that $\theta=\left(\theta^{1}, \theta^{2}\right)$. Then the 2 component Gibbs sampler proceeds as follows.

Two component Gibbs sampler

- Consider the target distribution $\pi(\theta)$ such that $\theta=\left(\theta^{1}, \theta^{2}\right)$. Then the 2 component Gibbs sampler proceeds as follows.
- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \theta_{0}^{2}\right)$.

Two component Gibbs sampler

- Consider the target distribution $\pi(\theta)$ such that $\theta=\left(\theta^{1}, \theta^{2}\right)$. Then the 2 component Gibbs sampler proceeds as follows.
- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \theta_{0}^{2}\right)$.
- Iteration $i ; i \geq 1$

Two component Gibbs sampler

- Consider the target distribution $\pi(\theta)$ such that $\theta=\left(\theta^{1}, \theta^{2}\right)$. Then the 2 component Gibbs sampler proceeds as follows.
- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \theta_{0}^{2}\right)$.
- Iteration $i ; i \geq 1$
- Sample $\theta_{i}^{1} \sim \pi\left(\theta^{1} \mid \theta_{i-1}^{2}\right)$.

Two component Gibbs sampler

- Consider the target distribution $\pi(\theta)$ such that $\theta=\left(\theta^{1}, \theta^{2}\right)$. Then the 2 component Gibbs sampler proceeds as follows.
- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \theta_{0}^{2}\right)$.
- Iteration $i ; i \geq 1$
- Sample $\theta_{i}^{1} \sim \pi\left(\theta^{1} \mid \theta_{i-1}^{2}\right)$.
- Sample $\theta_{i}^{2} \sim \pi\left(\theta^{2} \mid \theta_{i}^{1}\right)$.

Two component Gibbs sampler

- Consider the target distribution $\pi(\theta)$ such that $\theta=\left(\theta^{1}, \theta^{2}\right)$. Then the 2 component Gibbs sampler proceeds as follows.
- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \theta_{0}^{2}\right)$.
- Iteration $i ; i \geq 1$
- Sample $\theta_{i}^{1} \sim \pi\left(\theta^{1} \mid \theta_{i-1}^{2}\right)$.
- Sample $\theta_{i}^{2} \sim \pi\left(\theta^{2} \mid \theta_{i}^{1}\right)$.
- Sampling from these conditional is often feasible even when sampling from the joint is impossible (e.g. nuclear pump data).
- Clearly $\left\{\left(\theta_{i}^{1}, \theta_{i}^{2}\right)\right\}$ is a Markov chain and its transition kernel is

$$
P\left(\left(\theta^{1}, \theta^{2}\right),\left(\widetilde{\theta}^{1}, \widetilde{\theta}^{2}\right)\right)=\pi\left(\widetilde{\theta}^{1} \mid \theta^{2}\right) \pi\left(\widetilde{\theta}^{2} \mid \widetilde{\theta}^{1}\right)
$$

- Clearly $\left\{\left(\theta_{i}^{1}, \theta_{i}^{2}\right)\right\}$ is a Markov chain and its transition kernel is

$$
P\left(\left(\theta^{1}, \theta^{2}\right),\left(\widetilde{\theta}^{1}, \widetilde{\theta}^{2}\right)\right)=\pi\left(\widetilde{\theta}^{1} \mid \theta^{2}\right) \pi\left(\widetilde{\theta}^{2} \mid \widetilde{\theta}^{1}\right)
$$

- Then $\iint \pi\left(\theta^{1}, \theta^{2}\right) P\left(\left(\theta^{1}, \theta^{2}\right),\left(\widetilde{\theta}^{1}, \widetilde{\theta}^{2}\right)\right) d \theta^{1} d \theta^{2}$ satisfies

$$
\begin{aligned}
& \iint \pi\left(\theta^{1}, \theta^{2}\right) \pi\left(\widetilde{\theta}^{1} \mid \theta^{2}\right) \pi\left(\widetilde{\theta}^{2} \mid \widetilde{\theta}^{1}\right) d \theta^{1} d \theta^{2} \\
= & \int \pi\left(\theta^{2}\right) \pi\left(\widetilde{\theta}^{1} \mid \theta^{2}\right) \pi\left(\widetilde{\theta}^{2} \mid \widetilde{\theta}^{1}\right) d \theta^{2} \\
= & \int \pi\left(\widetilde{\theta}^{1}, \theta^{2}\right) \pi\left(\widetilde{\theta}^{2} \mid \widetilde{\theta}^{1}\right) d \theta^{2} \\
= & \pi\left(\widetilde{\theta}^{1}\right) \pi\left(\widetilde{\theta}^{2} \mid \widetilde{\theta}^{1}\right)=\pi\left(\widetilde{\theta}^{1}, \widetilde{\theta}^{2}\right)
\end{aligned}
$$

Irreducibility

- This does not ensure that the Gibbs sampler does converge towards the invariant distribution!

Irreducibility

- This does not ensure that the Gibbs sampler does converge towards the invariant distribution!
- Additionally it is required to ensure irreducibility: loosely speaking the Markov chain can move to any set A such that $\pi(A)>0$ for (almost) any starting point.

Irreducibility

- This does not ensure that the Gibbs sampler does converge towards the invariant distribution!
- Additionally it is required to ensure irreducibility: loosely speaking the Markov chain can move to any set A such that $\pi(A)>0$ for (almost) any starting point.
- This ensures that

$$
\frac{1}{N} \sum_{n=1}^{N} \varphi\left(\theta_{n}^{1}, \theta_{n}^{2}\right) \rightarrow \int \varphi\left(\theta^{1}, \theta^{2}\right) \pi\left(\theta^{1}, \theta^{2}\right) d \theta^{1} d \theta^{2}
$$

but NOT that asymptotically $\left(\theta_{n}^{1}, \theta_{n}^{2}\right) \sim \pi$.

Figure: A distribution that can lead to a reducible Gibbs sampler.

Aperiodicity

- Consider a simple example where $\mathbb{X}=\{1,2\}$ and $P(1,2)=P(2,1)=1$. Clearly the invariant distribution is given by $\pi(1)=\pi(2)=\frac{1}{2}$.

Aperiodicity

- Consider a simple example where $\mathbb{X}=\{1,2\}$ and $P(1,2)=P(2,1)=1$. Clearly the invariant distribution is given by $\pi(1)=\pi(2)=\frac{1}{2}$.
- However, we know that if the chain starts in $X_{0}=1$, then $X_{2 n}=1$ and $X_{2 n+1}=0$ for any n.

Aperiodicity

- Consider a simple example where $\mathbb{X}=\{1,2\}$ and $P(1,2)=P(2,1)=1$. Clearly the invariant distribution is given by $\pi(1)=\pi(2)=\frac{1}{2}$.
- However, we know that if the chain starts in $X_{0}=1$, then $X_{2 n}=1$ and $X_{2 n+1}=0$ for any n.
- We have

$$
\frac{1}{N} \sum_{n=1}^{N} \varphi\left(X_{n}\right) \rightarrow \int \varphi(x) \pi(x) d x
$$

but clearly X_{n} is NOT distributed according to π.

Aperiodicity

- Consider a simple example where $\mathbb{X}=\{1,2\}$ and $P(1,2)=P(2,1)=1$. Clearly the invariant distribution is given by $\pi(1)=\pi(2)=\frac{1}{2}$.
- However, we know that if the chain starts in $X_{0}=1$, then $X_{2 n}=1$ and $X_{2 n+1}=0$ for any n.
- We have

$$
\frac{1}{N} \sum_{n=1}^{N} \varphi\left(X_{n}\right) \rightarrow \int \varphi(x) \pi(x) d x
$$

but clearly X_{n} is NOT distributed according to π.

- You need to make sure that you do NOT explore the space in a periodic way to ensure that $X_{n} \sim \pi$ asymptotically.

Figure: Even when irreducibility and aperiodicity are ensured, the Gibbs sampler can still converge very slowly.

Deterministic Scan Gibbs Sampler

- If $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ where $p>2$, the Gibbs sampling strategy still applies.

Deterministic Scan Gibbs Sampler

- If $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ where $p>2$, the Gibbs sampling strategy still applies.
- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \ldots, \theta_{0}^{p}\right)$.

Deterministic Scan Gibbs Sampler

- If $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ where $p>2$, the Gibbs sampling strategy still applies.
- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \ldots, \theta_{0}^{p}\right)$.
- Iteration $i ; i \geq 1$:

Deterministic Scan Gibbs Sampler

- If $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ where $p>2$, the Gibbs sampling strategy still applies.
- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \ldots, \theta_{0}^{p}\right)$.
- Iteration $i ; i \geq 1$:
- For $k=1: p$

Deterministic Scan Gibbs Sampler

- If $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ where $p>2$, the Gibbs sampling strategy still applies.
- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \ldots, \theta_{0}^{p}\right)$.
- Iteration $i ; i \geq 1$:
- For $k=1: p$
- Sample $\theta_{i}^{k} \sim \pi\left(\theta^{k} \mid \theta_{i}^{-k}\right)$ where $\theta_{i}^{-k}=\left(\theta_{i}^{1}, \ldots, \theta_{i}^{k-1}, \theta_{i-1}^{k+1}, \ldots, \theta_{i-1}^{p}\right)$.

Random Scan Gibbs Sampler

- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \ldots, \theta_{0}^{p}\right)$.

Random Scan Gibbs Sampler

- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \ldots, \theta_{0}^{p}\right)$.
- Iteration $i ; i \geq 1$:

Random Scan Gibbs Sampler

- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \ldots, \theta_{0}^{p}\right)$.
- Iteration $i ; i \geq 1$:
- Sample $K \sim U_{\{1, \ldots, p\}}$.

Random Scan Gibbs Sampler

- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \ldots, \theta_{0}^{p}\right)$.
- Iteration $i ; i \geq 1$:
- Sample $K \sim U_{\{1, \ldots, p\}}$.
- Set $\theta_{i}^{-K}=\theta_{i-1}^{-K}$.

Random Scan Gibbs Sampler

- Initialization: Select deterministically or randomly $\theta_{0}=\left(\theta_{0}^{1}, \ldots, \theta_{0}^{p}\right)$.
- Iteration $i ; i \geq 1$:
- Sample $K \sim U_{\{1, \ldots, p\}}$.
- Set $\theta_{i}^{-K}=\theta_{i-1}^{-K}$.
- Sample $\theta_{i}^{K} \sim \pi\left(\theta^{K} \mid \theta_{i}^{-K}\right)$ where

$$
\theta_{i}^{-K}=\left(\theta_{i}^{1}, \ldots, \theta_{i}^{K-1}, \theta_{i}^{K+1}, \ldots, \theta_{i}^{p}\right) .
$$

Tricks of the trade

- Try to have as few "blocks" as possible.

Tricks of the trade

- Try to have as few "blocks" as possible.
- Put the most correlated variables in the same block.

Tricks of the trade

- Try to have as few "blocks" as possible.
- Put the most correlated variables in the same block.
- If necessary, reparametrize the model to achieve this.

Tricks of the trade

- Try to have as few "blocks" as possible.
- Put the most correlated variables in the same block.
- If necessary, reparametrize the model to achieve this.
- Integrate analytically as many variables as possible: pretty algorithms can be much more inefficient than ugly algorithms.

Tricks of the trade

- Try to have as few "blocks" as possible.
- Put the most correlated variables in the same block.
- If necessary, reparametrize the model to achieve this.
- Integrate analytically as many variables as possible: pretty algorithms can be much more inefficient than ugly algorithms.
- There is no general result telling strategy A is better than strategy B in all cases: you need experience.

Application to Simulation of Fractal Images

- Consider a 2D black and white 'target' image. We define an distribution v which assigns $1 / P$ mass on each black point and zero on white points where P is the number of black points.

Application to Simulation of Fractal Images

- Consider a 2D black and white 'target' image. We define an distribution v which assigns $1 / P$ mass on each black point and zero on white points where P is the number of black points.
- Now we consider the following simple Markov process on \mathbb{R}^{2} with

$$
P(x, y)=\sum_{i=1}^{k} w_{i} \delta_{A_{i} x+b_{i}}(y)
$$

and we select $\left\{w_{i}, A_{i}, b_{i}\right\}$ such that $P(x, d y)$ has an invariant distribution π which is an approximation of v.

Application to Simulation of Fractal Images

- Consider a 2D black and white 'target' image. We define an distribution v which assigns $1 / P$ mass on each black point and zero on white points where P is the number of black points.
- Now we consider the following simple Markov process on \mathbb{R}^{2} with

$$
P(x, y)=\sum_{i=1}^{k} w_{i} \delta_{A_{i} x+b_{i}}(y)
$$

and we select $\left\{w_{i}, A_{i}, b_{i}\right\}$ such that $P(x, d y)$ has an invariant distribution π which is an approximation of v.

- To find $\left\{w_{i}, A_{i}, b_{i}\right\}$, we write

$$
\begin{aligned}
\int \pi(x) P(x, y) f(y) d x d y & =\sum_{i=1}^{k} w_{i} \int f\left(A_{i} x+b_{i}\right) \pi(x) d x \\
& =\int f(x) \pi(x) d x \approx \int f(x) v(x) d x
\end{aligned}
$$

and solve approximately the equations for some functions f (linear or low order polynoms).

Figure: Fractal image generated using Iterated random functions with $k=2$ and $N=10000$ samples

Gibbs Sampler for Bayesian Variable Selection

- We select the following model

$$
Y=\sum_{i=1}^{p} \beta_{i} X_{i}+\sigma V \text { where } V \sim \mathcal{N}(0,1)
$$

where we assume $\mathcal{I G}\left(\sigma^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right)$ and for $\alpha^{2} \ll 1$

$$
\beta_{i} \sim \frac{1}{2} \mathcal{N}\left(0, \alpha^{2} \delta^{2} \sigma^{2}\right)+\frac{1}{2} \mathcal{N}\left(0, \delta^{2} \sigma^{2}\right)
$$

Gibbs Sampler for Bayesian Variable Selection

- We select the following model

$$
Y=\sum_{i=1}^{p} \beta_{i} X_{i}+\sigma V \text { where } V \sim \mathcal{N}(0,1)
$$

where we assume $\mathcal{I G}\left(\sigma^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right)$ and for $\alpha^{2} \ll 1$

$$
\beta_{i} \sim \frac{1}{2} \mathcal{N}\left(0, \alpha^{2} \delta^{2} \sigma^{2}\right)+\frac{1}{2} \mathcal{N}\left(0, \delta^{2} \sigma^{2}\right)
$$

- We introduce a latent variable $\gamma_{i} \in\{0,1\}$ such that

$$
\begin{aligned}
& \operatorname{Pr}\left(\gamma_{i}=0\right)=\operatorname{Pr}\left(\gamma_{i}=1\right)=\frac{1}{2} \\
& \beta_{i}\left|\gamma_{i}=0 \sim \mathcal{N}\left(0, \alpha^{2} \delta^{2} \sigma^{2}\right), \quad \beta_{i}\right| \gamma_{i}=1 \sim \mathcal{N}\left(0, \delta^{2} \sigma^{2}\right)
\end{aligned}
$$

- We have parameters $\left(\beta_{1: p}, \gamma_{1: p}, \sigma^{2}\right)$ and observe $D=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$.
- We have parameters $\left(\beta_{1: p}, \gamma_{1: p}, \sigma^{2}\right)$ and observe $D=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$.
- A potential Gibbs sampler consists of sampling iteratively from $p\left(\beta_{1: p} \mid D, \gamma_{1: p}, \sigma^{2}\right)$ (Gaussian), $p\left(\sigma^{2} \mid D, \gamma_{1: p}, \beta_{1: p}\right)$
(inverse-Gamma) and $p\left(\gamma_{1: p} \mid D, \beta_{1: p}, \sigma^{2}\right)$.
- We have parameters $\left(\beta_{1: p}, \gamma_{1: p}, \sigma^{2}\right)$ and observe $D=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$.
- A potential Gibbs sampler consists of sampling iteratively from $p\left(\beta_{1: p} \mid D, \gamma_{1: p}, \sigma^{2}\right)$ (Gaussian), $p\left(\sigma^{2} \mid D, \gamma_{1: p}, \beta_{1: p}\right)$
(inverse-Gamma) and $p\left(\gamma_{1: p} \mid D, \beta_{1: p}, \sigma^{2}\right)$.
- In particular

$$
p\left(\gamma_{1: p} \mid D, \beta_{1: p}, \sigma^{2}\right)=\prod_{i=1}^{p} p\left(\gamma_{i} \mid \beta_{i}, \sigma^{2}\right)
$$

and

$$
p\left(\gamma_{i}=1 \mid \beta_{i}, \sigma^{2}\right)=\frac{\frac{1}{\sqrt{2 \pi} \delta \sigma} \exp \left(-\frac{\beta_{i}^{2}}{2 \delta^{2} \sigma^{2}}\right)}{\frac{1}{\sqrt{2 \pi} \delta \sigma} \exp \left(-\frac{\beta_{i}^{2}}{2 \delta^{2} \sigma^{2}}\right)+\frac{1}{\sqrt{2 \pi} \alpha \delta \sigma} \exp \left(-\frac{\beta_{i}^{2}}{2 \alpha^{2} \delta^{2} \sigma^{2}}\right)} .
$$

- We have parameters $\left(\beta_{1: p}, \gamma_{1: p}, \sigma^{2}\right)$ and observe $D=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$.
- A potential Gibbs sampler consists of sampling iteratively from $p\left(\beta_{1: p} \mid D, \gamma_{1: p}, \sigma^{2}\right)$ (Gaussian), $p\left(\sigma^{2} \mid D, \gamma_{1: p}, \beta_{1: p}\right)$
(inverse-Gamma) and $p\left(\gamma_{1: p} \mid D, \beta_{1: p}, \sigma^{2}\right)$.
- In particular

$$
p\left(\gamma_{1: p} \mid D, \beta_{1: p}, \sigma^{2}\right)=\prod_{i=1}^{p} p\left(\gamma_{i} \mid \beta_{i}, \sigma^{2}\right)
$$

and

$$
p\left(\gamma_{i}=1 \mid \beta_{i}, \sigma^{2}\right)=\frac{\frac{1}{\sqrt{2 \pi \delta \sigma}} \exp \left(-\frac{\beta_{i}^{2}}{2 \delta^{2} \sigma^{2}}\right)}{\frac{1}{\sqrt{2 \pi} \delta \sigma} \exp \left(-\frac{\beta_{i}^{2}}{2 \delta^{2} \sigma^{2}}\right)+\frac{1}{\sqrt{2 \pi} \alpha \delta \sigma} \exp \left(-\frac{\beta_{i}^{2}}{2 \alpha^{2} \delta^{2} \sigma^{2}}\right)} .
$$

- The Gibbs sampler becomes reducible as α goes to zero.
- This is the result of bad modelling and bad algorithm. You would like to put $\alpha \simeq 0$ and write

$$
Y=\sum_{i=1}^{p} \gamma_{i} \beta_{i} X_{i}+\sigma V \text { where } V \sim \mathcal{N}(0,1)
$$

where $\gamma_{i}=1$ if X_{i} is included or $\gamma_{i}=0$ otherwise. However this suggests that β_{i} is defined even when $\gamma_{i}=0$.

- This is the result of bad modelling and bad algorithm. You would like to put $\alpha \simeq 0$ and write

$$
Y=\sum_{i=1}^{p} \gamma_{i} \beta_{i} X_{i}+\sigma V \text { where } V \sim \mathcal{N}(0,1)
$$

where $\gamma_{i}=1$ if X_{i} is included or $\gamma_{i}=0$ otherwise. However this suggests that β_{i} is defined even when $\gamma_{i}=0$.

- A neater way to write such models is to write

$$
Y=\sum_{\left\{i: \gamma_{i}=1\right\}} \beta_{i} X_{i}+\sigma V=\beta_{\gamma}^{\top} X_{\gamma}+\sigma V
$$

where, for a vector $\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right), \beta_{\gamma}=\left\{\beta_{i}: \gamma_{i}=1\right\}$, $X_{\gamma}=\left\{X_{i}: \gamma_{i}=1\right\}$ and $n_{\gamma}=\sum_{i=1}^{p} \gamma_{i}$.

- This is the result of bad modelling and bad algorithm. You would like to put $\alpha \simeq 0$ and write

$$
Y=\sum_{i=1}^{p} \gamma_{i} \beta_{i} X_{i}+\sigma V \text { where } V \sim \mathcal{N}(0,1)
$$

where $\gamma_{i}=1$ if X_{i} is included or $\gamma_{i}=0$ otherwise. However this suggests that β_{i} is defined even when $\gamma_{i}=0$.

- A neater way to write such models is to write

$$
Y=\sum_{\left\{i: \gamma_{i}=1\right\}} \beta_{i} X_{i}+\sigma V=\beta_{\gamma}^{\top} X_{\gamma}+\sigma V
$$

where, for a vector $\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right), \beta_{\gamma}=\left\{\beta_{i}: \gamma_{i}=1\right\}$, $X_{\gamma}=\left\{X_{i}: \gamma_{i}=1\right\}$ and $n_{\gamma}=\sum_{i=1}^{p} \gamma_{i}$.

- Prior distributions

$$
\begin{aligned}
& \quad \pi_{\gamma}\left(\beta_{\gamma}, \sigma^{2}\right)=\mathcal{N}\left(\beta_{\gamma} ; 0, \delta^{2} \sigma^{2} I_{n_{\gamma}}\right) \mathcal{I} \mathcal{G}\left(\sigma^{2} ; \frac{v_{0}}{2}, \frac{\gamma_{0}}{2}\right) \\
& \text { and } \pi(\gamma)=\prod_{i=1}^{p} \pi\left(\gamma_{i}\right)=2^{-p} .
\end{aligned}
$$

- We are interested in sampling from the trans-dimensional distribution $\pi\left(\gamma, \beta_{\gamma}, \sigma^{2} \mid D\right)$.
- We are interested in sampling from the trans-dimensional distribution $\pi\left(\gamma, \beta_{\gamma}, \sigma^{2} \mid D\right)$.
- However, we know that

$$
\pi\left(\gamma, \beta_{\gamma}, \sigma^{2} \mid D\right)=\pi(\gamma \mid D) \pi\left(\beta_{\gamma}, \sigma^{2} \mid D, \gamma\right)
$$

where

$$
\pi(\gamma \mid D) \propto \pi(D \mid \gamma) \pi(\gamma)
$$

and

$$
\pi(D \mid \gamma)=\int \pi\left(D, \beta_{\gamma}, \sigma^{2} \mid \gamma\right) d \beta_{\gamma} d \sigma^{2}
$$

- $\pi(\gamma \mid D)$ is a discrete probability distribution with 2^{p} potential values. We can use the Gibbs sampler to sample from it.
- $\pi(\gamma \mid D)$ is a discrete probability distribution with 2^{p} potential values. We can use the Gibbs sampler to sample from it.
- Initialization: Select deterministically or randomly $\gamma_{0}=\left(\gamma_{0}^{1}, \ldots, \gamma_{0}^{p}\right)$.
- $\pi(\gamma \mid D)$ is a discrete probability distribution with 2^{p} potential values. We can use the Gibbs sampler to sample from it.
- Initialization: Select deterministically or randomly $\gamma_{0}=\left(\gamma_{0}^{1}, \ldots, \gamma_{0}^{p}\right)$.
- Iteration $i ; i \geq 1$:
- $\pi(\gamma \mid D)$ is a discrete probability distribution with 2^{p} potential values. We can use the Gibbs sampler to sample from it.
- Initialization: Select deterministically or randomly $\gamma_{0}=\left(\gamma_{0}^{1}, \ldots, \gamma_{0}^{p}\right)$.
- Iteration $i ; i \geq 1$:
- For $k=1: p$
- $\pi(\gamma \mid D)$ is a discrete probability distribution with 2^{p} potential values. We can use the Gibbs sampler to sample from it.
- Initialization: Select deterministically or randomly $\gamma_{0}=\left(\gamma_{0}^{1}, \ldots, \gamma_{0}^{p}\right)$.
- Iteration $i ; i \geq 1$:
- For $k=1: p$
- Sample $\gamma_{i}^{k} \sim \pi\left(\gamma^{k} \mid D, \gamma_{i}^{-k}\right)$ where

$$
\gamma_{i}^{-k}=\left(\gamma_{i}^{1}, \ldots, \gamma_{i}^{k-1}, \gamma_{i-1}^{k+1}, \ldots, \gamma_{i-1}^{p}\right) .
$$

- $\pi(\gamma \mid D)$ is a discrete probability distribution with 2^{p} potential values. We can use the Gibbs sampler to sample from it.
- Initialization: Select deterministically or randomly $\gamma_{0}=\left(\gamma_{0}^{1}, \ldots, \gamma_{0}^{p}\right)$.
- Iteration $i ; i \geq 1$:
- For $k=1: p$
- Sample $\gamma_{i}^{k} \sim \pi\left(\gamma^{k} \mid D, \gamma_{i}^{-k}\right)$ where

$$
\gamma_{i}^{-k}=\left(\gamma_{i}^{1}, \ldots, \gamma_{i}^{k-1}, \gamma_{i-1}^{k+1}, \ldots, \gamma_{i-1}^{p}\right) .
$$

- Optional step: Sample $\left(\beta_{\gamma, i}, \sigma_{i}^{2}\right) \sim \pi\left(\beta_{\gamma}, \sigma^{2} \mid D, \gamma\right)$.
- This very simple sampler is much more efficient than the previous one.
- This very simple sampler is much more efficient than the previous one.
- However, it can also mix very slowly because the components are updated one at a time.
- This very simple sampler is much more efficient than the previous one.
- However, it can also mix very slowly because the components are updated one at a time.
- Updating correlated components together would increase significantly the convergence speed of the algorithm at the cost of an increased complexity.

Finite Mixture Models

Figure: Velocity ($\mathrm{km} / \mathrm{sc}$) of galaxies in the Corona Borealis Region

- Consider the case where one has n data X_{i}

$$
X_{i} \stackrel{\text { i.i.d }}{\sim} \sum_{k=1}^{K} p_{k} \mathcal{N}\left(\mu_{k}, \sigma_{k}^{2}\right)
$$

where K is fixed and $\theta=\left\{\mu_{k}, \sigma_{k}^{2}, p_{k}\right\}_{k=1, \ldots, K}$ are unknown.

- Consider the case where one has n data X_{i}

$$
x_{i} \stackrel{i . i . d}{\sim} \sum_{k=1}^{K} p_{k} \mathcal{N}\left(\mu_{k}, \sigma_{k}^{2}\right)
$$

where K is fixed and $\theta=\left\{\mu_{k}, \sigma_{k}^{2}, p_{k}\right\}_{k=1, \ldots, K}$ are unknown.

- A standard approach consists of finding a local maximum of the log-likelihood

$$
\log f\left(x_{1: n} \mid \theta\right)=\sum_{i=1}^{n} \log f\left(x_{i} \mid \theta\right)
$$

where

$$
f(x \mid \theta)=\sum_{k=1}^{K} \frac{p_{k}}{\sqrt{2 \pi} \sigma_{k}} \exp \left(-\frac{\left(x-\mu_{k}\right)^{2}}{2 \sigma_{k}^{2}}\right) .
$$

- Consider the case where one has n data X_{i}

$$
x_{i} \stackrel{i . i . d}{\sim} \sum_{k=1}^{K} p_{k} \mathcal{N}\left(\mu_{k}, \sigma_{k}^{2}\right)
$$

where K is fixed and $\theta=\left\{\mu_{k}, \sigma_{k}^{2}, p_{k}\right\}_{k=1, \ldots, K}$ are unknown.

- A standard approach consists of finding a local maximum of the log-likelihood

$$
\log f\left(x_{1: n} \mid \theta\right)=\sum_{i=1}^{n} \log f\left(x_{i} \mid \theta\right)
$$

where

$$
f(x \mid \theta)=\sum_{k=1}^{K} \frac{p_{k}}{\sqrt{2 \pi} \sigma_{k}} \exp \left(-\frac{\left(x-\mu_{k}\right)^{2}}{2 \sigma_{k}^{2}}\right) .
$$

- Problem: The likelihood is unbounded!

Bayesian Model

- We consider the Bayesian framework where we set priors

$$
\pi(\theta)=\pi\left(p_{1}, \ldots, p_{K}\right) \prod_{k=1}^{K} \pi\left(\mu_{k}, \sigma_{k}^{2}\right)
$$

Bayesian Model

- We consider the Bayesian framework where we set priors

$$
\pi(\theta)=\pi\left(p_{1}, \ldots, p_{K}\right) \prod_{k=1}^{K} \pi\left(\mu_{k}, \sigma_{k}^{2}\right)
$$

- We use the following (conditionally conjugate) priors where

$$
\begin{aligned}
\left(p_{1}, \ldots, p_{K}\right) & \sim \mathcal{D}\left(\gamma_{1}, \ldots, \gamma_{K}\right) . \\
\mu_{k} \mid \sigma_{k}^{2} & \sim \mathcal{N}\left(\alpha_{k}, \frac{\sigma_{k}^{2}}{\lambda_{k}}\right), \sigma_{k}^{2} \sim \mathcal{I G}\left(\frac{\lambda_{k}+3}{2}, \frac{\beta_{k}}{2}\right) .
\end{aligned}
$$

Bayesian Model

- We consider the Bayesian framework where we set priors

$$
\pi(\theta)=\pi\left(p_{1}, \ldots, p_{K}\right) \prod_{k=1}^{K} \pi\left(\mu_{k}, \sigma_{k}^{2}\right)
$$

- We use the following (conditionally conjugate) priors where

$$
\begin{aligned}
\left(p_{1}, \ldots, p_{K}\right) & \sim \mathcal{D}\left(\gamma_{1}, \ldots, \gamma_{K}\right) . \\
\mu_{k} \mid \sigma_{k}^{2} & \sim \mathcal{N}\left(\alpha_{k}, \frac{\sigma_{k}^{2}}{\lambda_{k}}\right), \sigma_{k}^{2} \sim \mathcal{I G}\left(\frac{\lambda_{k}+3}{2}, \frac{\beta_{k}}{2}\right) .
\end{aligned}
$$

- It is impossible to use the Gibbs sampler to sample from $\pi\left(\theta \mid x_{1: n}\right)$.

Latent Variables

- Like in the EM, we can introduce the missing data $Z_{i} \in\{1, \ldots, K\}$ such that

$$
X_{i} \mid Z_{i} \sim \mathcal{N}\left(\mu_{Z_{i}}, \sigma_{Z_{i}}^{2}\right)
$$

and

$$
\operatorname{Pr}\left(Z_{i}=k\right)=p_{k} .
$$

Latent Variables

- Like in the EM, we can introduce the missing data $Z_{i} \in\{1, \ldots, K\}$ such that

$$
X_{i} \mid Z_{i} \sim \mathcal{N}\left(\mu_{Z_{i}}, \sigma_{Z_{i}}^{2}\right)
$$

and

$$
\operatorname{Pr}\left(Z_{i}=k\right)=p_{k}
$$

- The "complete" likelihood admits a simple form

$$
\pi\left(x_{1: n}, z_{1: n} \mid \theta\right)=\prod_{k=1}^{n} f\left(x_{i} \mid \theta, z_{i}\right) \pi\left(z_{i} \mid \theta\right)
$$

Latent Variables

- Like in the EM, we can introduce the missing data $Z_{i} \in\{1, \ldots, K\}$ such that

$$
x_{i} \mid z_{i} \sim \mathcal{N}\left(\mu_{z_{i}}, \sigma_{z_{i}}^{2}\right)
$$

and

$$
\operatorname{Pr}\left(Z_{i}=k\right)=p_{k}
$$

- The "complete" likelihood admits a simple form

$$
\pi\left(x_{1: n}, z_{1: n} \mid \theta\right)=\prod_{k=1}^{n} f\left(x_{i} \mid \theta, z_{i}\right) \pi\left(z_{i} \mid \theta\right)
$$

- Thus we propose to sample the joint posterior $\pi\left(\theta, z_{1: n} \mid y_{1: n}\right)$ using the Gibbs sampler; that is sampling iteratively from $\pi\left(\theta \mid y_{1: n}, z_{1: n}\right)$ and $\pi\left(z_{1: n} \mid y_{1: n}, \theta\right)$.

Gibbs Sampler for Finite Mixture Distributions

- We have

$$
\pi\left(z_{1: n} \mid \theta, x_{1: n}\right)=\prod_{i=1}^{n} \pi\left(z_{i} \mid \theta, x_{i}\right)
$$

where

$$
\pi\left(z_{i}=j \mid \theta, x_{i}\right)=\frac{f\left(x_{i} \mid \theta, j\right) p_{j}}{\sum_{k=1}^{K} f\left(x_{i} \mid \theta, k\right) p_{k}}
$$

Gibbs Sampler for Finite Mixture Distributions

- We have

$$
\pi\left(z_{1: n} \mid \theta, x_{1: n}\right)=\prod_{i=1}^{n} \pi\left(z_{i} \mid \theta, x_{i}\right)
$$

where

$$
\pi\left(z_{i}=j \mid \theta, x_{i}\right)=\frac{f\left(x_{i} \mid \theta, j\right) p_{j}}{\sum_{k=1}^{K} f\left(x_{i} \mid \theta, k\right) p_{k}}
$$

- We have

$$
\pi\left(\theta \mid z_{1: n}, x_{1: n}\right)=\pi\left(p_{1}, \ldots, p_{K} \mid z_{1: n}\right) \prod_{k=1}^{K} \pi\left(\mu_{k}, \sigma_{k}^{2} \mid z_{1: n}, x_{1: n}\right)
$$

- Introducing

$$
n_{k}=\sum_{i=1}^{n} \mathbf{1}_{\{k\}}\left(z_{i}\right), n_{k} \bar{x}_{k}=\sum_{i=1}^{n} x_{i} \mathbf{1}_{\{k\}}\left(z_{i}\right), s_{k}^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{k}\right)^{2} \mathbf{1}_{\{k\}}\left(z_{i}\right) .
$$

- Introducing

$$
n_{k}=\sum_{i=1}^{n} \mathbf{1}_{\{k\}}\left(z_{i}\right), n_{k} \bar{x}_{k}=\sum_{i=1}^{n} x_{i} \mathbf{1}_{\{k\}}\left(z_{i}\right), s_{k}^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{k}\right)^{2} \mathbf{1}_{\{k\}}\left(z_{i}\right) .
$$

- We have the full conditionals

$$
\begin{aligned}
& p_{1}, \ldots, p_{K} \mid z_{1: n} \sim \mathcal{D}\left(\gamma_{1}+n_{1}, \ldots, \gamma_{K}+n_{K}\right) \\
& \sigma_{k}^{2} \mid z_{1: n}, x_{1: n} \sim \mathcal{I} \mathcal{G}\left(\frac{\lambda_{k}+n_{k}+3}{2}, \frac{\lambda_{k} s_{k}^{2}+\beta_{k}+s_{k}^{2}-\left(\lambda_{k}+n_{k}\right)^{-1}\left(\lambda_{k} \alpha_{k}+n_{k} \bar{x}_{k}\right)^{2}}{2}\right), \\
& \mu_{k} \mid \sigma_{k}^{2}, z_{1: n}, x_{1: n} \sim \mathcal{N}\left(\frac{\lambda_{k} \alpha_{k}+n_{k} \bar{x}_{k}}{\lambda_{k}+n_{k}}, \frac{\sigma_{k}^{2}}{\lambda_{k}+n_{k}}\right) .
\end{aligned}
$$

- Introducing

$$
n_{k}=\sum_{i=1}^{n} \mathbf{1}_{\{k\}}\left(z_{i}\right), n_{k} \bar{x}_{k}=\sum_{i=1}^{n} x_{i} \mathbf{1}_{\{k\}}\left(z_{i}\right), s_{k}^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{k}\right)^{2} \mathbf{1}_{\{k\}}\left(z_{i}\right) .
$$

- We have the full conditionals

$$
\begin{aligned}
& p_{1}, \ldots, p_{K} \mid z_{1: n} \sim \mathcal{D}\left(\gamma_{1}+n_{1}, \ldots, \gamma_{K}+n_{K}\right), \\
& \sigma_{k}^{2} \mid z_{1: n}, x_{1: n} \sim \mathcal{I} \mathcal{G}\left(\frac{\lambda_{k}+n_{k}+3}{2}, \frac{\lambda_{k} s_{k}^{2}+\beta_{k}+s_{k}^{2}-\left(\lambda_{k}+n_{k}\right)^{-1}\left(\lambda_{k} \alpha_{k}+n_{k} \bar{x}_{k}\right)^{2}}{2}\right), \\
& \mu_{k} \mid \sigma_{k}^{2}, z_{1: n}, x_{1: n} \sim \mathcal{N}\left(\frac{\lambda_{k} \alpha_{k}+n_{k} \bar{x}_{k}}{\lambda_{k}+n_{k}}, \frac{\sigma_{k}^{2}}{\lambda_{k}+n_{k}}\right) .
\end{aligned}
$$

- It is thus trivial to implement the Gibbs sampler.

Simulation Results

- Consider some $n=100$ simulated data

$$
X_{i} \sim 0.3 \mathcal{N}(-2,1)+0.7 \mathcal{N}(2,1)
$$

i.e. we have well-separated components.

Simulation Results

- Consider some $n=100$ simulated data

$$
X_{i} \sim 0.3 \mathcal{N}(-2,1)+0.7 \mathcal{N}(2,1)
$$

i.e. we have well-separated components.

- We set $\gamma_{k}=1, \alpha_{k}=0, \lambda_{k}=0.01, \beta_{k}=0.01$ and run the Gibbs sampler for 10000 iterations.

Simulation Results

- Consider some $n=100$ simulated data

$$
X_{i} \sim 0.3 \mathcal{N}(-2,1)+0.7 \mathcal{N}(2,1)
$$

i.e. we have well-separated components.

- We set $\gamma_{k}=1, \alpha_{k}=0, \lambda_{k}=0.01, \beta_{k}=0.01$ and run the Gibbs sampler for 10000 iterations.
- We obtain $\widehat{\mathbb{E}}\left(\mu_{1} \mid x_{1: n}\right)=2.17, \widehat{\mathbb{E}}\left(\mu_{2} \mid x_{1: n}\right)=-1.89$, $\widehat{\mathbb{E}}\left(\sigma_{1}^{2} \mid x_{1: n}\right)=0.92, \widehat{\mathbb{E}}\left(\sigma_{2}^{2} \mid x_{1: n}\right)=1.3, \widehat{\mathbb{E}}\left(p_{1} \mid x_{1: n}\right)=0.32$ and $\widehat{\mathbb{E}}\left(p_{2} \mid x_{1: n}\right)=0.68$.

Simulation Results

- Consider some $n=100$ simulated data

$$
X_{i} \sim 0.3 \mathcal{N}(-2,1)+0.7 \mathcal{N}(2,1)
$$

i.e. we have well-separated components.

- We set $\gamma_{k}=1, \alpha_{k}=0, \lambda_{k}=0.01, \beta_{k}=0.01$ and run the Gibbs sampler for 10000 iterations.
- We obtain $\widehat{\mathbb{E}}\left(\mu_{1} \mid x_{1: n}\right)=2.17, \widehat{\mathbb{E}}\left(\mu_{2} \mid x_{1: n}\right)=-1.89$, $\widehat{\mathbb{E}}\left(\sigma_{1}^{2} \mid x_{1: n}\right)=0.92, \widehat{\mathbb{E}}\left(\sigma_{2}^{2} \mid x_{1: n}\right)=1.3, \widehat{\mathbb{E}}\left(p_{1} \mid x_{1: n}\right)=0.32$ and $\widehat{\mathbb{E}}\left(p_{2} \mid x_{1: n}\right)=0.68$.
- Increasing the number of iterations to 100000, I obtain similar results. Any good?
- Your algorithm does not work! Indeed we know that

$$
\begin{aligned}
\mathbb{E}\left(\mu_{1} \mid x_{1: n}\right) & =\mathbb{E}\left(\mu_{2} \mid x_{1: n}\right), \mathbb{E}\left(\sigma_{1}^{2} \mid x_{1: n}\right)=\mathbb{E}\left(\sigma_{2}^{2} \mid x_{1: n}\right), \\
\mathbb{E}\left(p_{1} \mid x_{1: n}\right) & =\mathbb{E}\left(p_{2} \mid x_{1: n}\right)=0.5 .
\end{aligned}
$$

- Your algorithm does not work! Indeed we know that

$$
\begin{aligned}
\mathbb{E}\left(\mu_{1} \mid x_{1: n}\right) & =\mathbb{E}\left(\mu_{2} \mid x_{1: n}\right), \mathbb{E}\left(\sigma_{1}^{2} \mid x_{1: n}\right)=\mathbb{E}\left(\sigma_{2}^{2} \mid x_{1: n}\right), \\
\mathbb{E}\left(p_{1} \mid x_{1: n}\right) & =\mathbb{E}\left(p_{2} \mid x_{1: n}\right)=0.5 .
\end{aligned}
$$

- This follows because both the prior and likelihood are exchangeable, that is

$$
\begin{aligned}
& \pi\left(p_{1}, \ldots, p_{K}, \mu_{1}, \ldots, \mu_{K}, \sigma_{1}^{2}, \ldots, \sigma_{K}^{2} \mid x_{1: n}\right) \\
= & \pi\left(p_{\zeta(1)}, \ldots, p_{\zeta(K)}, \mu_{\zeta(1)}, \ldots, \mu_{\zeta(K)}, \sigma_{\zeta(1)}^{2}, \ldots, \sigma_{\zeta(K)}^{2} \mid x_{1: n}\right)
\end{aligned}
$$

for any permutation ζ of the labels.

- Your algorithm does not work! Indeed we know that

$$
\begin{aligned}
\mathbb{E}\left(\mu_{1} \mid x_{1: n}\right) & =\mathbb{E}\left(\mu_{2} \mid x_{1: n}\right), \mathbb{E}\left(\sigma_{1}^{2} \mid x_{1: n}\right)=\mathbb{E}\left(\sigma_{2}^{2} \mid x_{1: n}\right), \\
\mathbb{E}\left(p_{1} \mid x_{1: n}\right) & =\mathbb{E}\left(p_{2} \mid x_{1: n}\right)=0.5 .
\end{aligned}
$$

- This follows because both the prior and likelihood are exchangeable, that is

$$
\begin{aligned}
& \pi\left(p_{1}, \ldots, p_{K}, \mu_{1}, \ldots, \mu_{K}, \sigma_{1}^{2}, \ldots, \sigma_{K}^{2} \mid x_{1: n}\right) \\
= & \pi\left(p_{\zeta(1)}, \ldots, p_{\zeta(K),} \mu_{\zeta(1)}, \ldots, \mu_{\zeta(K)}, \sigma_{\zeta(1)}^{2}, \ldots, \sigma_{\zeta(K)}^{2} \mid x_{1: n}\right)
\end{aligned}
$$

for any permutation ζ of the labels.

- Clearly, conditional expectations are not useful in this case. \Rightarrow This does NOT mean that your Bayesian model is useless.
- One can select another point estimates; e.g. the MAP estimate

$$
\theta_{M A P}=\arg \max \pi\left(\theta \mid x_{1: n}\right) .
$$

- One can select another point estimates; e.g. the MAP estimate

$$
\theta_{M A P}=\arg \max \pi\left(\theta \mid x_{1: n}\right)
$$

- Alternatively, constraints can be set on the priors; e.g. we ensure that

$$
\mu_{1} \leq \mu_{2} \leq \ldots \leq \mu_{P}
$$

- One can select another point estimates; e.g. the MAP estimate

$$
\theta_{M A P}=\arg \max \pi\left(\theta \mid x_{1: n}\right)
$$

- Alternatively, constraints can be set on the priors; e.g. we ensure that

$$
\mu_{1} \leq \mu_{2} \leq \ldots \leq \mu_{P}
$$

- However, this can lead to "strange" shapes of the posteriors and is not natural in most cases.
- One way to improve the algorithm consists of randomly permuting the labels (Fruwirth-Schnatter, JASA, 2002)
\Rightarrow Realistic only if K is moderate because there are K ! permutations.
- One way to improve the algorithm consists of randomly permuting the labels (Fruwirth-Schnatter, JASA, 2002)
\Rightarrow Realistic only if K is moderate because there are K ! permutations.
- Alternative ways to improve the algorithm include
- One way to improve the algorithm consists of randomly permuting the labels (Fruwirth-Schnatter, JASA, 2002)
\Rightarrow Realistic only if K is moderate because there are K ! permutations.
- Alternative ways to improve the algorithm include
- Not introducing the latent variables and using sampling strategies different from Gibbs.
- One way to improve the algorithm consists of randomly permuting the labels (Fruwirth-Schnatter, JASA, 2002)
\Rightarrow Realistic only if K is moderate because there are K ! permutations.
- Alternative ways to improve the algorithm include
- Not introducing the latent variables and using sampling strategies different from Gibbs.
- Integrating out θ as the marginal distribution $\pi\left(z_{1: n} \mid x_{1: n}\right)$ can be computed analytically (for conjugate priors)
- Initialization: Select deterministically or randomly $z_{1: n}^{(0)}$.
- Initialization: Select deterministically or randomly $z_{1: n}^{(0)}$.
- Iteration $i ; i \geq 1$:
- Initialization: Select deterministically or randomly $z_{1: n}^{(0)}$.
- Iteration $i ; i \geq 1$:
- For $k=1: n$, sample $z_{k}^{(i)} \sim \pi\left(z_{k} \mid x_{1: n}, z_{-k}^{(i)}\right)$ where $z_{-k}^{(i)}=\left(z_{1}^{(i)}, \ldots, z_{k-1}^{(i)}, z_{k+1}^{(i-1)}, \ldots, z_{n}^{(i-1)}\right)$.
- Initialization: Select deterministically or randomly $z_{1: n}^{(0)}$.
- Iteration $i ; i \geq 1$:
- For $k=1: n$, sample $Z_{k}^{(i)} \sim \pi\left(z_{k} \mid x_{1: n}, z_{-k}^{(i)}\right)$ where

$$
z_{-k}^{(i)}=\left(z_{1}^{(i)}, \ldots, z_{k-1}^{(i)}, z_{k+1}^{(i-1)}, \ldots, z_{n}^{(i-1)}\right)
$$

- Sample $\theta^{(i)} \sim \pi\left(\theta \mid x_{1: n}, z_{1: n}^{(i)}\right)$.

Galaxy dataset

Figure: Predictive distribution for the galaxy dataset.

Discussion

- The Gibbs sampler is a generic tool to sample approximately from high-dimensional distributions.

Discussion

- The Gibbs sampler is a generic tool to sample approximately from high-dimensional distributions.
- Each time you face a problem, you need to think hard about it to design an efficient algorithm.

Discussion

- The Gibbs sampler is a generic tool to sample approximately from high-dimensional distributions.
- Each time you face a problem, you need to think hard about it to design an efficient algorithm.
- Except the choice of the partitions of parameters, the Gibbs sampler is parameter free; this does not mean it is efficient.

