CPSC 535D: Assignement 2

February 25, 2007

1. Stochastic Volatility Model

Consider the following stochastic volatility model

$$X_n = \alpha X_{n-1} + \sigma V_n,$$

$$Y_n = \beta \exp(X_n/2) W_n$$

where $X_1 \sim \mathcal{N}\left(0, \frac{\sigma^2}{1-\alpha^2}\right)$, $V_n \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, 1)$ and $W_n \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, 1)$. • Given $\theta = (\alpha, \beta, \sigma)$, design a clever SMC method based on the approximation of

• Given $\theta = (\alpha, \beta, \sigma)$, design a clever SMC method based on the approximation of the optimal importance distribution $p(x_n | x_{n-1}, y_n)$ and compare it to the standard bootstrap filter where one uses the importance distributions $p(x_n | x_{n-1})$.

• Assume now that θ is unknown, propose and implement an EM algorithm based on SMC to estimate the maximum likelihood estimate

$$\widehat{\theta}_{ML} = \operatorname*{arg\,maxp}_{ heta}\left(\left.y_{1:T}\right| heta
ight)$$

where the observations $y_{1:T}$ (T = 200) can be downloaded from the webpage of the course.

• What are the limitations of this algorithm? what happens if T increases?

2. MIXTURE OF POISSON DISTRIBUTIONS

The data in Table 1 were extracted from The London Times during the years 1910-1912. The two columns labeled "Deaths i" refer to the number of deaths to women 80 years and older reported by day. The columns labeled "Frequency n_i " referer to the number of days with i deaths.

Deaths i	Frequency i	Deaths i	Frequency i
0	162	5	61
1	267	6	27
2	271	7	8
3	185	8	3
4	111	9	1

A Poisson distribution gives a poor fit to these data, possibly because of different patterns of deaths in winter and summer. A mixture of two Poisson distributions provides a much better fit. Under such a model, the likelihood of the N observations is given by

$$p(y_1, ..., y_N | \theta) = \prod_{i=1}^{N} \left[\alpha \exp(-\lambda_1) \frac{\lambda_1^{y_i}}{y_i!} + (1 - \alpha) \exp(-\lambda_2) \frac{\lambda_2^{y_i}}{y_i!} \right] \\ = \prod_{i=1}^{\max_j y_j} \left[\alpha \exp(-\lambda_1) \frac{\lambda_1^{y_i}}{y_i!} + (1 - \alpha) \exp(-\lambda_2) \frac{\lambda_2^{y_i}}{y_i!} \right]^{n_i}$$

where $\theta = (\alpha, \lambda_1, \lambda_2)$. $\alpha \in [0, 1]$ is the mixture parameter, λ_1 and λ_2 are the means of the two components, N is the total numbers of days, $n_i = \sum_{j=1}^N 1 (y_j = i)$ is the total number of days with *i* deaths, and $\max_j y_j = 9$ for this example. We use

total number of days with *i* deaths, and $\max_j y_j = 9$ for this example. We use the following prior $\alpha \sim \mathcal{U}[0,1]$ (uniform distribution on [0,1]) and $\lambda_i \sim \mathcal{G}(0.1,0.1)$ (Gamma distribution with parameters 0.1 and 0.1) for i = 1, 2.

• Propose and Implement a Metropolis-Hastings algorithm to sample from $p(\theta | y_1, ..., y_N)$.

• Propose a Gibbs sampler to sample from $p(\theta|y_1, ..., y_N)$ [Hint: It requires introducing some missing data].

Note that $p(\lambda_1|y_1, ..., y_N) = p(\lambda_2|y_1, ..., y_N)$, this suggests a very simple method to assess the convergence of your algorithms.

• Present meaningful point estimates of λ_1 and λ_2 .