CPSC 535D: Assignement 2

February 25, 2007

1. Stochastic Volatility Model

Consider the following stochastic volatility model

$$
\begin{aligned}
X_{n} & =\alpha X_{n-1}+\sigma V_{n} \\
Y_{n} & =\beta \exp \left(X_{n} / 2\right) W_{n}
\end{aligned}
$$

where $X_{1} \sim \mathcal{N}\left(0, \frac{\sigma^{2}}{1-\alpha^{2}}\right), V_{n} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}(0,1)$ and $W_{n} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}(0,1)$.

- Given $\theta=(\alpha, \beta, \sigma)$, design a clever SMC method based on the approximation of the optimal importance distribution $p\left(x_{n} \mid x_{n-1}, y_{n}\right)$ and compare it to the standard bootstrap filter where one uses the importance distributions $p\left(x_{n} \mid x_{n-1}\right)$.
- Assume now that θ is unknown, propose and implement an EM algorithm based on SMC to estimate the maximum likelihood estimate

$$
\widehat{\theta}_{M L}=\underset{\theta}{\arg \max p}\left(y_{1: T} \mid \theta\right)
$$

where the observations $y_{1: T}(T=200)$ can be downloaded from the webpage of the course.

- What are the limitations of this algorithm? what happens if T increases?

2. Mixture of Poisson Distributions

The data in Table 1 were extracted from The London Times during the years 19101912. The two columns labeled "Deaths i " refer to the number of deaths to women 80 years and older reported by day. The columns labeled "Frequency n_{i} " referer to the number of days with i deaths.

Deaths i	Frequency i	Deaths i	Frequency i
0	162	5	61
1	267	6	27
2	271	7	8
3	185	8	3
4	111	9	1

A Poisson distribution gives a poor fit to these data, possibly because of different patterns of deaths in winter and summer. A mixture of two Poisson distributions provides a much better fit. Under such a model, the likelihood of the N observations is given by

$$
\begin{aligned}
p\left(y_{1}, \ldots, y_{N} \mid \theta\right) & =\prod_{i=1}^{N}\left[\alpha \exp \left(-\lambda_{1}\right) \frac{\lambda_{1}^{y_{i}}}{y_{i}!}+(1-\alpha) \exp \left(-\lambda_{2}\right) \frac{\lambda_{2}^{y_{i}}}{y_{i}!}\right] \\
& =\prod_{i=1}^{\max _{j} y_{j}}\left[\alpha \exp \left(-\lambda_{1}\right) \frac{\lambda_{1}^{y_{i}}}{y_{i}!}+(1-\alpha) \exp \left(-\lambda_{2}\right) \frac{\lambda_{2}^{y_{i}}}{y_{i}!}\right]^{n_{i}}
\end{aligned}
$$

where $\theta=\left(\alpha, \lambda_{1}, \lambda_{2}\right) . \alpha \in[0,1]$ is the mixture parameter, λ_{1} and λ_{2} are the means of the two components, N is the total numbers of days, $n_{i}=\sum_{j=1}^{N} 1\left(y_{j}=i\right)$ is the total number of days with i deaths, and $\max _{j} y_{j}=9$ for this example. We use the following prior $\alpha \sim \mathcal{U}[0,1]$ (uniform distribution on $[0,1])$ and $\lambda_{i} \sim \mathcal{G}(0.1,0.1)$ (Gamma distribution with parameters 0.1 and 0.1) for $i=1,2$.

- Propose and Implement a Metropolis-Hastings algorithm to sample from $p\left(\theta \mid y_{1}, \ldots, y_{N}\right)$.
- Propose a Gibbs sampler to sample from $p\left(\theta \mid y_{1}, \ldots, y_{N}\right)$ [Hint: It requires introducing some missing data].

Note that $p\left(\lambda_{1} \mid y_{1}, \ldots, y_{N}\right)=p\left(\lambda_{2} \mid y_{1}, \ldots, y_{N}\right)$, this suggests a very simple method to assess the convergence of your algorithms.

- Present meaningful point estimates of λ_{1} and λ_{2}.

