Visualization Tool for Flow Cytometry Data Standards Project

Evgeny Maksakov maksakov@cs.ubc.ca

CS533C Department of Computer Science, UBC in collaboration with Terry Fox Laboratory, BC Cancer Agency (Prof. Ryan Brinkman & Dr. Josef Spidlen)

Today

- Flow Cytometry (reminder)
 - Dataset description
- Goals
- Previous work
- FlowCytoVis prototype in details
- Data analysis comparison
 - FlowJo vs FlowCytoVis prototype
- Demo!
- Conclusions and future work

Dataset Properties

Typically for research at the TFL:

- 100,000+ events
- 5-10 dimensions

Capability:

- 1,000,000 events (cells going through the laser beam) per dataset
- Up to 20 dimensions

- Today demo datasets:
- 20,000 events
- 5 dimensions

Dimensions

PI dye intensity (measures viability)

Green Fluorescent Protein intensity (measures gene expression)

Pictures are taken from http://www.upenn.edu/pennnews/photos/, http://www.bdbiosciences.com/image_library/ and flow cytometry manual

Aimed Goals

User requirements (based on user studies):

- 1. See all dimensions at once
- 2. Improve analysis sequence
- 3. Leave scatterplots and histograms
- 4. Gating/Filtering feature
- 5. Provide better usability than commercial FlowJo

By means of:

- 1. Using Parallel Coordinates with Gating/Filtering
- 2. Implementing data clustering throughout dimensions
- 3. Include scatterplots and histograms in the interface
- 4. Make effective, convenient and interactive interface

3D Parallel Coordinate System for FCM

Marc Streit at al. (2006)

3D Parallel Coordinate Problems

- Does not provide any new information about dataset
- Introduces visual occlusions
- Necessity to rotate to see all data

Aimed Goals

User requirements (based on user studies):

- 1. See all dimensions at once
- 2. Improve analysis sequence
- ✓3. Leave scatterplots and histograms
- ✓4. Gating/Filtering feature
 - 5. Provide better usability than commercial FlowJo

By means of:

- ✓ 1. Using Parallel Coordinates with Gating/Filtering
- Implementing data clustering throughout dimensions
- ✓ 3. Include scatterplots and histograms in the interface
 - ✓ 4. Make effective, convenient and interactive interface

Data Analysis Process (FlowJo)

Negative control

(each scatterplot is a new window)

Event Count is a total number of cells passed through the laser beam

Important note: sequence of actions is the same all the time for negative control!

Data Analysis Process (FlowCytoVis) Negative control (everything happens in one window)

Data Analysis Process (FlowJo)

Looking for result

Important note: Same gates as in neg. control apply automatically on the positive set!

Data Analysis Process (FlowCytoVis)

Important note: Gates apply automatically on the positive set here too!

Aimed Goals

User requirements (based on user studies):

- 1. See all dimensions at once
- ✓2. Improve analysis sequence
- ✓3. Leave scatterplots and histograms
- ✓4. Gating/Filtering feature
- **?**5. Provide better usability than commercial FlowJo

By means of:

- ✓ 1. Using Parallel Coordinates with Gating/Filtering
- 2. Implementing data clustering throughout dimensions
- ✓ 3. Include scatterplots and histograms in the interface
 - Make effective, convenient and interactive interface

Demo

Implementation details:

- Java2D + Swing
- CFCS library for reading .fcs (FCM datasets) format

Strengths and Weaknesses of the FlowCytoVis

- + Can provide insights into the data
- + Convenient (less clicks to get the same result)
- + Interactive
- + Allows intuitive multidimensional filtering
- + Visually appealing
- Slow picture rendering relatively to Scatterplots
- At the moment does not provide full functionality that FlowJo provides.

Conclusions

- The FlowCytoVis proved to be a relevant solution for the Flow Cytometry data visualization and was accepted with enthusiasm
- Parallel Coordinates (PC) view is a nice addition to canonical Scatter Plots for Flow Cytometry
- Clustering works very well together with PC and can save some rendering time
- Clustering needs refinement and improvement
- Improving speed is vital for PC

Future Work

- Implement all the functionality still missing
- Integrate existing clustering made for the Flow Cytometry Data Standards Project into the FlowCytoVis
- Improve rendering speed for parallel coordinates

Acknowledgements

- Dr. Tamara Munzner
- Dr. Ryan Brinkman
- Dr. Josef Spidlen
- Dr. Louie van de Lagemaat
- Irina Maksakova
- Other TFL Members

Questions...