

Visualization of space-time patterns of West Nile virus

Alan McConchie CPSC 533c: Information Visualization November 15, 2006

West Nile Virus

- Introduced in North America in 1999
- Transmitted by mosquitoes
 - These mosquito species are highly ornithiphilic
- Corvids (crows, jays) are primary reservoir
 - High mortality
- Amplification cycle as mosquitoes feed on infected birds
- Humans infected by mosquitoes as a side-effect
- Theorized spillover effect as birds die off and mosquitoes switch to feeding on humans
 - Would result in observable lag between bird deaths and human infections

West Nile Virus Transmission Cycle

Source: The Centers for Disease Control and Prevention; http://www.cdc.gov/ncidod/dvbid/westnile/cycle.htm

Dynamics of WNV in the field

- Public reporting of dead birds can be used to track WNV activity
- DYCAST (Dynamic Continuous-Area Space-Time) system
 - Identifies clusters of dead birds within lattice cells
 - Result: daily raster map of WNV activity
 - WNV activity = high risk of human infection
 - Binary risk/no risk classification ("lit" / "not lit")

DYCAST Results

Analysis problems

- What is the relationship between WNV activity in birds and human cases of WNV?
- What patterns of WNV activity are predictors of human cases?
- Do different areas have different relationship between WNV activity and human cases?
 - Lag between dead birds and human onset may vary according to climate, population density, etc

DYCAST Animation

Scientific Visualization vs Information Visualization

- The visual representation is given (x, y and t)
- However, animation or 3D visualization is difficult to use
- Similarities may not be adjacent in space or time
 - Other forms of juxtaposition are necessary
- Use a derived variable, or in this case, a timeseries
 - Human case "risk histories"
 - Sequence of daily risk values for the cell in which a human occurs

X dimension: time Y dimension: individual human cases

Red:	risk
Black:	no risk
Blue:	date of
	human
	onset

Sorted according to number of lit cells

Sorted according to date of human onset

Sorted according to date of first risk

Shifted to align human onsets

- Are similar risk histories spatially correlated? If so, what underlying circumstances do they have in common?
- Phase one: use linked views to explore spatial relationships
- Phase two: use automated clustering to discover similarities in risk histories

000

wnv_humans.viz

File Edit Misc Base Meta Help

Project Progress Summary

- Completed goals:
 - Command-line utilities to extract risk histories
 - Implement sorting
- In progress:
 - Select visualization toolkit, assemble layout
- To do:
 - Develop interface between toolkit and commandline
 - Create linkages between views
 - Clustering of risk histories