### **Lecture 6: Statistical Graphics**

#### Information Visualization CPSC 533C, Fall 2009

Tamara Munzner

**UBC** Computer Science

Mon, 28 September 2009

# **Readings Covered**

Multi-Scale Banking to 45 Degrees. Jeffrey Heer, Maneesh Agrawala. IEEE TVCG 12(5) (Proc. InfoVis 2006), Sep/Oct 2006, pages 701-708.

Animated Transitions in Statistical Data Graphics. Jeffrey Heer and George G. Robertson. IEEE TVCG (Proc. InfoVis 2007) 13(6): 1240-1247, 2007.

Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Wesley Willett, Jeffrey Heer, and Maneesh Agrawala. IEEE TVCG (Proc InfoVis 2007) 13(6):1129-1136.

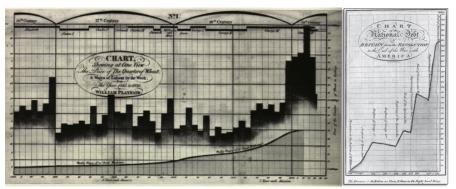
Graph-Theoretic Scagnostics. Leland Wilkinson, Anushka Anand, and Robert Grossman. Proc InfoVis 05

### **Additional Readings**

Visual information seeking: Tight coupling of dynamic query filters with starfield displays. Chris Ahlberg and Ben Shneiderman, Proc SIGCHI '94, pages 313-317

Metric-Based Network Exploration and Multiscale Scatterplot. Yves Chiricota, Fabien Jourdan, Guy Melancon. Proc. InfoVis 04, pages 135-142.

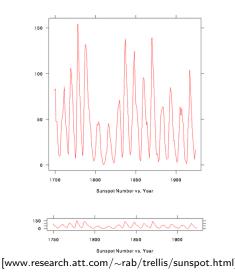
The Elements of Graphing Data, William S. Cleveland, Hobart Press 1994.


### **Statistical Graphics**

long history for paper-based views of data

- springboard for infovis
- http://www.math.yorku.ca/SCS/Gallery/milestone/
- improving line charts
- improving scatterplots
  - interactive dynamic queries
  - multiscale structure
  - matrix of scatterplots, level of indirection
- improving statistical graphics
  - animated transitions between graphics
  - making widgets more information-dense

### **Line Charts**


invented by William Playfair (1759-1823)
 also bar charts, pie charts, ...



http://labspace.open.ac.uk/file.php/1872/Mu120\_3\_021i.jpg http://www.math.yorku.ca/SCS/Gallery/images/playfair-wheat1.gif

# Banking to 45 Degrees

- previous work by Cleveland
- perceptual principle: most accurate angle judgement at 45 degrees
- pick line graph aspect ratio (height/width) accordingly



### Multiscale Banking to 45

frequency domain analysis

find interesting regions at multiple scales

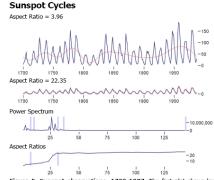
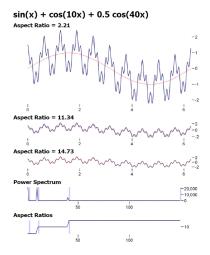
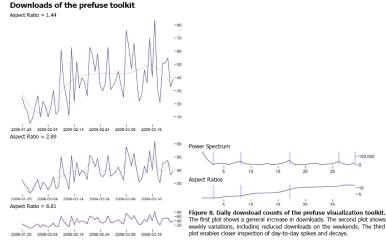




Figure 5. Sunspot observations, 1700-1987. The first plot shows lowfrequency oscillations in the maximum values of sunspot cycles. The second plot brings the individual cycles into greater relief.


[Multi-Scale Banking to 45 Degrees. Heer and Agrawala, Proc InfoVis 2006 vis.berkeley.edu/papers/banking]

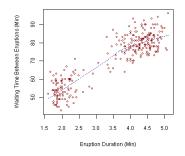
# **Choosing Aspect Ratios**

- FFT the data, smooth by convolve with Gaussian
- find interesting spikes/ranges in power spectrum
- cull nearby regions if too similar, ensure overview shown
- create trend curves for each aspect ratio



### Multiscale Banking to 45




[Multi-Scale Banking to 45 Degrees. Heer and Agrawala, Proc InfoVis 2006 vis.berkeley.edu/papers/banking]

# Critique

- very nice generalization of old idea
- does not require interactivity to reap benefits

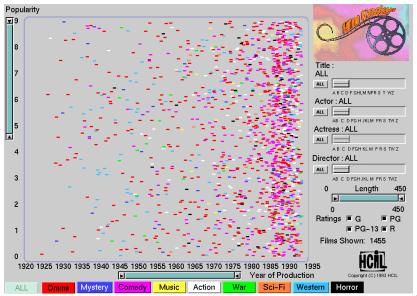
#### **Scatterplots**

- encode two input variables with spatial position
- show positive/negative/no correllation between variables



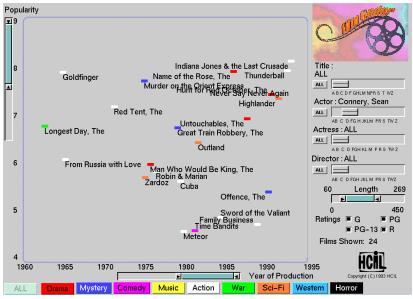


[http://upload.wikimedia.org/wikipedia/commons/0/0f/Oldfaithful3.png]


# Interactive Scatterplots: Dynamic Queries

- tight coupling: immediate feedback after action
- fast, lightweight visual exploration
  - vs. composing SQL query

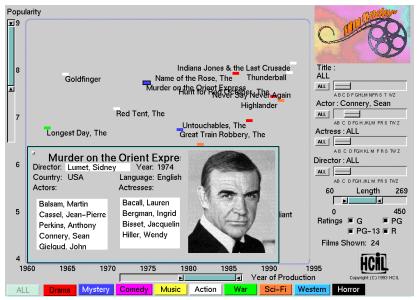



[Visual information seeking: Tight coupling of dynamic query filters with starfield displays. Chris Ahlberg and Ben Shneiderman, Proc SIGCHI '94, p 313-317] [http://www.cs.umd.edu/hcil/pubs/screenshots/FilmFinder/]

#### FilmFinder



IVisual information seeking. Tight coupling of dynamic query filters with starfield

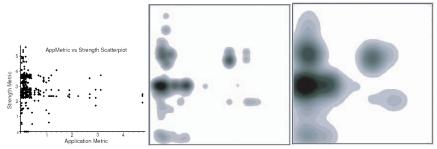

#### FilmFinder



Wisual information cooking: Tight coupling of dynamic guary filters with starfield

14 / 34

#### FilmFinder

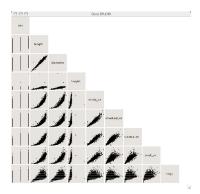



Wisual information cooking: Tight coupling of dynamic quory filters with starfield

### **Multiscale Scatterplots**

blur shows structure at multiple scales

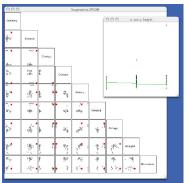
- convolve with Gaussian
- slider to control scale parameter interactively
- easily selectable regions in quantized image




[Metric-Based Network Exploration and Multiscale Scatterplot. Yves Chiricota, Fabien Jourdan, Guy Melancon. Proc. InfoVis 04]

### **SPLOM: Scatterplot Matrix**

show all pairwise variable combos side by side

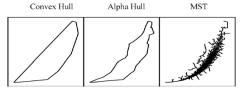

matrix size grows quadratically with variable count



# **Graph-Theoretic Scagnostics**

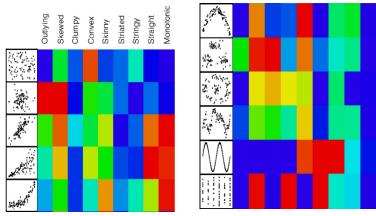
reduce problem to constant size

- overview matrix of 9 geometric metrics
- meta-SPLOM: each point represents scatterplot
  - detail on demand to see individual scatterplots

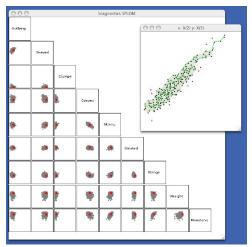



Graph-Theoretic Scagnostics. Leland Wilkinson, Anushka Anand, and Robert Grossman. Proc InfoVis 05.

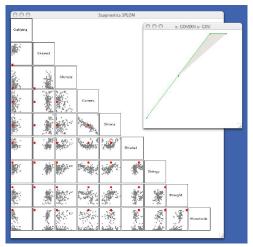
# **Measuring Scatterplots**


- aspects and measures
  - outliers: outlying
  - shape: convex, skinny, stringy, straight






- trend: monotonic
- density: skewed, clumpy
- coherence: striated


# **Measuring Scatterplots**



#### Results



#### Results



# Critique

powerful and elegant method

- curse of dimensionality is hard problem
- abstraction level clearly appropriate for experts
  - unsuitable for novices
- presentation problem: color use in paper itself

### **Animated Transitions**

general and powerful idea

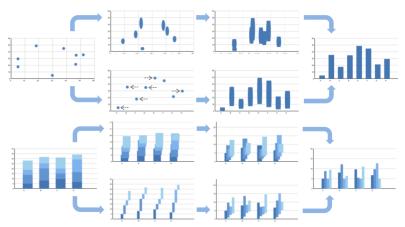
- transitions, not motion as visual encoding
- benefits
  - attracts attention
  - facilitates object constancy
  - implies causality
  - emotionally engaging
- this paper: statistical graphics
  - design principles
  - controlled experiments

[Animated Transitions in Statistical Data Graphics. Jeffrey Heer and George G. Robertson. IEEE TVCG (Proc. InfoVis 2007) 13(6): 1240-1247, 2007.]

# **Transition Taxonomy**

- change viewpoint
- change spatial substrate
- filter
- reorder
- change time
- change visual mapping
- change data schema

# **Congruence Principles**


internal and external representations should match

- both structure and content
- principles
  - maintain valid data graphics during transitions
  - use consistent mappings (semantic-syntactic)
  - respect semantic correspondences
  - avoid ambiguity

# **Apprehension Principles**

- external representation structure and content should be readily and accurately perceived and comprehended
- principles
  - group similar transitions
    - gestalt common fate
  - minimize occlusion
  - maximize predictability
    - slow-in, slow-out
  - use simple transitions
  - use staging for complex transitions
  - make transitions as long as needed, but no longer

# Staging



[Animated Transitions in Statistical Data Graphics. Jeffrey Heer and George G. Robertson. IEEE TVCG (Proc. InfoVis 2007) 13(6): 1240-1247, 2007.]

### Experiments

study 1: object location tracking

- animation always helped
- staged animation almost always helped
- study 2: value change estimation
  - animation helps in some cases
  - staging not significant help
- preference: staged anim mostly, anim always
- guideline: avoid overly complex multi-staging

# Critique

# Critique

thorough investigation,

goes beyond anecdotal evidence

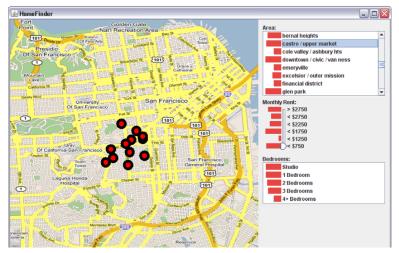
### **Scented Widgets**

embedded visualizations for standard UI elements

- graphically compact/terse
- information scent cues for navigating info spaces



[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE TVCG (Proc InfoVis 2007) 13(6):1129-1136. ]


# **Implemented Scent Types**

| Table 1. Scent encodings | supported by | scented | widgets |
|--------------------------|--------------|---------|---------|
|--------------------------|--------------|---------|---------|

| Name       | Description                                                                | Example                                     |  |
|------------|----------------------------------------------------------------------------|---------------------------------------------|--|
| Hue        | Varies the hue of the widget (or of a visualization embedded in it)        | Option <u>A</u> Option <u>B</u>             |  |
| Saturation | Varies the saturation of the widget (or of a visualization embedded in it) | Option <u>A</u> Option <u>B</u>             |  |
| Opacity    | Varies the saturation of the widget (or of a visualization embedded in it) | Option <u>A</u><br>Option <u>B</u>          |  |
| Text       | Inserts one or more small text figures into the widget                     | (2) Option <u>A</u><br>(10) Option <u>B</u> |  |
| lcon       | Inserts one or more small icons into the widget.                           | Option <u>A</u> Option <u>B</u>             |  |
| Bar Chart  | Inserts one or more small bar chart visualizations into the widget         | Option <u>A</u><br>Option <u>B</u>          |  |
| Line Chart | Inserts one or more small line chart<br>visualizations into the widget     | Option <u>A</u>                             |  |

[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE TVCG (Proc InfoVis 2007) 13(6):1129-1136. ]

# **Example Application**



[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE TVCG (Proc InfoVis 2007) 13(6):1129-1136. ]

### **Experiments**

- more unique discoveries at first
  - but effect faded over time
- significant preference
- no impairment from clutter

# Critique

# Critique

- information-dense annotation successful
- good discussion of toolkit issues
- user study solidifies contribution

# **Reading for Next Time**

- Ware, Chapter 10: Interacting with Visualizations: first half, p 317-324
- Tufte, Chapter 4: Small Multiples
- Exploring High-D Spaces with Multiform Matrices and Small Multiples. Alan MacEachren, Xiping Dai, Frank Hardisty, Diansheng Guo, and Gene Lengerich. Proc InfoVis 2003, p 31-38.
- Building Highly-Coordinated Visualizations In Improvise. Chris Weaver. Proc. InfoVis 2004
- The Visual Design and Control of Trellis Display. R. A. Becker, W. S. Cleveland, and M. J. Shyu (1996). Journal of Computational and Statistical Graphics, 5:123-155.