
Rolf Biehn

 Visualization of a software systems based on their
structure, history, or behavior

 Today’s presentation:
◦ Program Execution Traces
◦ Source Code History
◦ Program Optimization

David Lorenz et al.

 Techniques to visualize the execution flow and
execution patterns

 Input is call traces from instrumented code

 Understand program execution flow in order to
program or debug it

UML Execution

+Scales better than directed graphs
-Vertical Space is consumed quickly
-Somewhat difficult to read

UML Call Graph
Tree

+Easier to read than an UML diagram (no “bouncing
between axis”)

+Horizontal & Vertical space is used more efficiently
+Enables better user interaction

•Flattening is useful for System libraries
•Can collapse and expand nodes
•Can search & filter (with expressions)
•Panning & Zooming also supported • 3D box indicates a collapsed node

• Colors correspond to a class
• ID #s represent identity of the object

• 3D box used to show pattern
• Saves lots of space in call traces
• Can expand/contract
• Number (6X) shows number of repetitions
• Also applies to recursion

 Bunch of dimension:
◦ Identity, Class Identity, Message Structure, Depth

Limiting, Repetition, Polymorphism, Associatively,
Commutatively

 Create a hash function for each leaf node which
considers these dimensions

 Create a recursive hash function which considers
its children in the call graph

 Put all nodes into a dictionary
 How long does it take? Memory concerns?

 Understand program execution flow in order to
program or debug it
◦ (B) Looks like it should work, if implemented carefully
◦ How to navigate from high-level if I don’t know precisely

what I want to see?
◦ What about multi-threading?
◦ How well does it scale? What if number of Classes

exceeds distinguishable colours?

Alex Telea, et al.

 CVSScan is part of a larger suite of tools called
Visual Code Navigator

 Provides information of the history of check-ins

 Answer the following questions
◦ Who performed these modifications of the code
◦ Which parts of the code are unstable?
◦ How are changes correlated?
◦ How are the development tasks distributed?
◦ What is the context in which a piece of code appeared?

 All encoded using colors
◦ Author
◦ Content (block, comment, references)
◦ Evolution (add/remove/delete/unchanged)

Global Line Position allows Left
to Right reading

 Informal Studies (not targeted)
 15 minutes of training
 Silent Observer
 Why not use a real-world case? (i.e. trying to fix a

bug)
 No control
 No negative/constructive comments

 Script file from the FreeBSD
 “Here they tuned the regular expressions”
 “Apparently a major change took place in the

middle of the project. It mainly affected the
check_version procedure”

 Rated as a success

 C file socket implementation of the X Transport
service layer

 The user recognized 2 authors performed most of
the changes and the area of heavy modification

 Overall, the user did not have a very clear image
of the file’s evolution

 Who performed these modifications of the code?
◦ (E) Hard to Track exactly “who is pink?”

 Which parts of the code are unstable?
◦ (B) Seems o.k. for this purpose

 How are changes correlated?
◦ (F) Correlation to other files in same check-in?
◦ Correlation to other changes in the same file?

 How are the development tasks distributed?
◦ (D) Although we can see distribution, precisely who

wrote what is difficult to figure out
 What is the context in which a piece of code

appeared?
◦ (F) Hard to link back to changelist
◦ Branching history?

Chris Stolte et al.

 Program called Rivet
 Help optimization on multi-processor architectures

 Optimize
◦ Know where to look
◦ Drill into the details
◦ Know the context – map back to the source code

somehow

 Pipelining: overlap the execution of multiple
instructions within a functional unit

 Multiple Functional Units: exploit instruction level
parallelism (ILP)

 Out-of-Order Execution: increase possibility of
ILP

 Speculation: guess and fetch ahead

 Empty/Icache: An instruction cache miss
 Exception/Flush : An instruction requires

sequential execution
 Load/Store: Waiting for memory
 Issue/Functional Unit: Waiting for a functional

unit to complete execution

 Know where to look.
◦ (B) Great use of overview-plus detail display
◦ But is this really the best entry point?
◦ What about filters?

 Look at the details
◦ (A) Looks good

 Know the context – map back to the source code
somehow
◦ (A) Looks good
◦ Next step link to IDE?

