

Dimensionality Analysis: Linear

- how many dimensions is enough? - could be more than 2 or 3!
- linear dim reduct: PCA, 25 dimims used
- linear dim reduct: PCA, 25 dims
- physically impossible intermediate points when interpolate

Spring-Based MDS: Naive

- repeat for all points
- compute spring force to all other points - difference between high dim, low dim distance - move to better location using computed forces
- minimize differences
and low dimensions
- distance scaling: minimize objective function
- stress $(D, \Delta)=\sqrt{\frac{\sum_{v}\left(d_{0}-d_{0}\right)^{2}}{\sum_{j} F_{2}}}$
- D : matrix of lowD distances
- Δ : matrix of hiD distances δ_{y}
- D: matrix of lowD distances
- compare distances only with a few points
- maintain small local neighborhood set
- each time pick some randoms, swap in if closer

Cluster Stability

- display

- also terrain metaphor
- underlying computation
- energy minimization (springs) vs. MDS - weighted edges
- do same clusters form with different random start points?
- "ordination"
- spatial layout of graph nodes
- $O\left(n^{2}\right)$ iteration, $O\left(n^{3}\right)$ algorithm

Dimensionality Analysis: Nonlinear

- nonlinear dim reduct (charting): $10-15$
- all intermediate points physically possible

Meaningful Axes: Nameable By People

- red, green, blue, specular, diffuse, glossy, metallic. plastic-y, roughness, rubbery, greasiness, dustiness..

Faster Spring Model: Stochastic
- compare distances only with a few points
- maintain small local neighborhood set
- each time pick some randoms, swap in if closer

Faster Spring Model: Stochastic

- compare distances only with a few points - maintain small local neighborhood set
- small constant: 6 locals, 3 randoms typical
- $O(n)$ iteration, $O\left(n^{2}\right)$ algorithm

Approach

- normalize within each column
- similarity metric
- discussion: Pearson's correllation coefficient
- threshold value for marking as similar
- discussion: finding critical value

Faster Spring Model: Stochastic

- compare distances only with a few points
- maintain small local neighborhood set

Glimmer Algorithm

- multilevel, designed to exploit GPU
- restriction to decimate
- relaxation as core computation

GP relaxation to interpolate up to next level

- GPU stochastic as subsystem
- poor convergence properties if run alone
- low-pass-filter stress approo. for termination

CGimmer: Mutiliker/ MDS on the CPU. Ingram, Manenere and Olana. IEEE TVCC

Graph Layout

- criteria
- geometric distance matching graph-theoretic distance - vertices ane hop avay close
- insensitive to random starting positions
- major problem with previous work!
- tractable computation
- force-directed placement
- discussion: energy minimization
- others: gradient descent, etc

Glimmer Results

- sparse document dataset: 28 K dims, 28 K points

-	
	MAM, M

	$\stackrel{\square}{\text { "na }}$

Barrier Jumping

- same idea as simulated annealing
- but compute directly
- just ignore repulsion for fraction of vertices
- solves start position sensitivity problem

Results

efficiency

- naive approach: $O\left(V^{2}\right)$
- appraimate density field: $O(V)$
good stability
- rotation/reflection can occur

Dimension Ordering

- in NP: heuristic, like most interesting infovis problems
- divide and conquer

I iterative hierarchical clustering

- representative dimensions
choices
- similarity metrics
- importance metrics
- importance matiance
- ordering algorithms
- optimal
- random swap
- simple depth-first traversal

Results: Star Glyphs

- raw, order/space, distort, filter

Critique

Critique

- real data
- suggest check against subsequent publication
- give criteria, then discuss why solution fits
- visual + numerical results
- Convincing images plus benchmark graphs
- detailed discussion of alternatives at each stage
- specific prescriptive advice in conclusion

MDS Beyond Points

- galaxies: aggregation

- themescapes: terrain/landscapes
- studies: less effective than points alone [Tory 07, 09]

Results: Parallel Coordinates

- raw, order/space, zoom, filter
- interaction
- manual intervention
- Structure-based brushing
- structure-based

Results: Scatterplot Matrices

- raw, filter

- pro
- approach on multiple techniques. - real data!
- con
-always show order then space then filter
- hard to tell which is effective
- show ordered vs. uncredered after zoom/filter?

