Dustin Dunsmuir

FOCUS + CONTEXT

Papers

- Keeping things in context: a comparative evaluation of focus plus context screens, overviews, and zooming. Patrick Baudisch, Nathaniel Good, Victoria Bellotti, and Pamela Schraedley. CHI 2002.
- Evaluation of Semantic Fisheye Zooming to Provide Focus+Context. Andrew J. Afram, John Briedis, Daisuke Fujiwara, Robert J.K. Jacob, Caroline G.L. Cao, and David Kahle. Human Factors and Ergonomics Society 51st Annual Meeting, 2007. p.459-463.
- An Improved Fisheye Zoom Algorithm for Visualizing and Editing Hierarchical Models. Tobias Reinhard, Silvio Meier, and Martin Glinz. Second International Workshop on Requirements Engineering Visualization, 2007.

Keeping Things in **Context: A Comparative Evaluation of Focus Plus** Context Screens, Overviews, and Zooming.

Interfaces

Field Study

• Interviewed fourteen experts

• Multi-scale content:

	Static		Dynamic
Task	Graphic Design	Chip Design	Air Traffic Control
Document	Poster: 1m	Wafer: 12cm	Zone: 50km
Smallest Object	Text: 1cm	Conductive Path: 3µm	Airplane: 50m
Smallest Detail	Align: 0.5mm	Grid 0.5µm	25m steps
Ratio	2,000	240,000	2,000

Static Data Study

- Oircuit board
 - Path tracing
 - Verify connected pairs of pins

- Map of London distance comparison
 - Hotels and conference location marked
 - Which one is closer by taxi?

Results

Focus + Context 21% and 36% faster and also preferred by the majority

 Overview + Detail slower due to switching views

- O Problems noted:
 - Context not very usable, too blurry
 - Users cast shadows on display

Dynamic Data Study

Only overview + detail and focus + context

 Driving simulation
Subjects had to avoid rocks (in context) and nails (in focus)

Focus + context had one third of the obstacles hit, and it was preferred

Peripheral vision used

Critique

 Innovative method of combining display techniques to make focus + context

 Tasks intelligently chosen and strong results supporting focus + context

Are results useful in the future when it will be easier to have full screen at high res?

Evaluation of Semantic Fisheye Zooming to Provide Focus + Context.

Visual Understanding Environment (VUE)

Concept map application for the classroom

 Digital Library Objects connected by user defined relations

Canvas for drawing and creating objects

Problems

 Difficult to view concept maps larger than dozens of nodes

• Using geometric zooming...

- Removes context
- Nothing added by zooming, nodes just get larger (not semantic)
- Must instead look at detail in another window

Solution

Semantic Fisheye Zoom

 Activated by mouse over, gives detail that would otherwise be in a popup window

Justified by earlier work:

 An evaluation of semantic fisheye views for opportunistic search in an annotated image collection. Paul Janecek and Pearl Pu. International Journal on Digital Libraries, 2005. p.42-56.

Study

 Compared semantic fisheye zoom to control interface (normal zoom)

• Expected new zoom to…

- Be faster to use
- Be preferred
- Allow for remembering more information
- Did not expect higher accuracy

Setup

- Students answered 3 question sets while using interface:
 - 1. Questions involving a single node
 - 2. ...two or more nodes
 - 3. ...an overall understanding of the concept map
- 4th question set answered without interface (by memory)

Results

 Significant:
Control faster in set 1

Accuracy in Set 4 was higher for fisheye

- Better learning of information
- No need to integrate across displays

Critique

Builds upon previous studies
Makes modest assumptions
Study performed like real world use

- Item is the second s
- How many nodes were in the graph?

An Improved Fisheye Zoom Algorithm for Visualizing and Editing Hierarchical Models

(b)

ADORA

Eclipse plugin

 Analysis and Description of Requirements and Architecture

 Object oriented modeling method, display as nested hierarchy

Demo

http://www.ifi.uzh.ch/rerg/research/projects/adora/

Algorithm Properties

Commutative zoom operations

Preserve the mental map

- Orthogonality ordering
- Proximity relations

Topology

Layout Adjustment and the Mental Map. Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Journal of Visual Languages and Computing, 6(2), 1995. p.183–210.

Interval Structure

Figure 2. Interval structure

Commutative

 Intervals remembered and have minimum size

Multipurpose

Add and remove done using algorithm

- Add as large as possible, then expand
- Zoom out to pixel, then remove

Resize and move done using remove and then add

Filtering (Show/Hide) remember position

Critique

 Flexible and powerful, but could collect large amounts of intervals over time

Moving multiple nodes - weird behavior
Demo

 Has Table Lens like reaction to zooming when many nodes are lined up
Demo

QUESTIONS?