Cartography or Geospatial

Shama Rashid
23-Nov-2009

The Space-Time Cube Revisited from a

Geo-Visualization Perspective

Menno Jan Kraak
International Cartographic Conference, 2003

Previous Work

'6os Hägerstrand's space-time model:

- Space-Time Path(STP) - limited by capability constraints, coupling and authority constraints
- Terms -stations, activity bundles, path footprint,
- Space-Time Prism - Potential Path Space (PPS), PPA
- Space-Time cube - 3 dimensions, geography along x-y axis, time along z axis

Figure 1 : Authors day at the city of Enschede

Automation and Multiple Views

An interactive visual environment with alternative graphics connected to the cube via multiple linked views

Figure 2 : Napoleon's 1812 march into Russia

Axis Rotation and Measurement

Applications and Extended Functionalities

- Orienteering run, fitness run - terrain and it's effect, reconstruct participant's trajectory
- Archaeology - spread of civilization, interesting location

Using Additional Views

Figure : Napoleon's retreat

Critique

Pros:

- Strong tool, can associate axis with other variable
- Scaling along axis possible

Cons:

- Space and time have to be associated to two of the axis
- Need additional views even for basic space concepts like distance

Questions on usability aspects of the cube's viewing environment:

1. How many views can the user handle?
2. Can multiple STPs be shown?
3. How should the interface look like?

Unfolding the Earth : Myriahedral Projections

Jarke J. Van Wijk

The Cartographic Journal, Feb 2008

Distortion in Map Projection

Terms :

- Myriahedron
- Parallels and meridians
- Graticulated mesh
- Tissot indicatrix
- Conformal projection
- Equal area projection
- terra incognita projection

Factors leading to different requirements

1) intended use of the map
2) the available technology
3) the area or aspect

Graticulated Mesh Conditions

- Triangular faces with small area as node and edges as edge of graph G
- foldout connected and can be flattened implies H_{f} is a spanning tree
- G_{c} is a spanning tree
- no fold-overs

Algorithm to generate myriahedral:

1. Generate a mesh
2. Assign weights to all edges
3. Calculate a maximal spanning tree H_{f} using Prim's algorithm $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}| \log |\mathrm{V}|)$
4. Unfold the mesh
5. Render the unfolded mesh

Unfolding mesh

azimuthal

azimuthal, two hemispheres

Projections on Platonic Solids

Defining Mesh

a. Generate mesh lines along and perpendicular to contours of f with the algorithm of Jobard and Lefer;
b. Calculate intersections of these sets of lines, and derive polygons;
c. Tesselate polygons with more than four edges; and finally
d. Use the standard approach to decide on folds and cuts.

Alternate Mesh Definition

Based on vector fields and tensor fields:

Pretty Maps!

Azimuthal projection, random weights added, 81920 polygons

Critique

Pros:

- Methodologically interesting in Computer Science perspective
- Can use different weight factors according to presentation target

Cons:

- fold-over rare but not restricted
- Most resultant maps unusual and unusable
- High computational complexity
- Cuts are more disturbing than distortions to most users

Geographically Weighted Visualization: Interactive Graphics for
 Scale-Varying Exploratory Analysis

Jason Dykes and Chris Brunsdon
IEEE Transactions on Visualization and Computer Graphics, 2007

Context

André-Michel Guerry on Moral statistics:

- Dataset - related data for the departments of France in the early 19th century
- View - uni-variate choropleth maps to identify trends and outliers

Friendly proved some of Guerry's hypothesis wrong using regression

$x 4$: donations to the poor

$x 6$: population per suicide

Summary Statistics

Weighted Mean, $\mathrm{M}(\mathrm{u}, \mathrm{h})=\frac{\sum x_{i} w_{i}(u)}{\sum w_{i}(u)}$
Gaussian decay function, $\mathrm{w}_{\mathrm{i}}(\mathrm{u})=\exp \left(-\frac{\left|u-u_{i}\right|^{2}}{2 h}\right)$
Redefining weight function as $\mathrm{W}_{\mathrm{i}}(\mathrm{u})=\frac{w_{i}(u)}{\sum w_{i}(u)}$
Then $M(\mathrm{u}, \mathrm{h})=\sum x_{i} W_{i}(u)$

Discrete set of value, probability pairs $L=\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{W}_{\mathrm{i}}\right\}$

Weight Maps and Their Effects

$h=25$

Boxplots, Choropleths and

 Scalograms

original values $x 1, i=23$ highlighted

scalogram $x 1$, for all i
$x_{i} h$, where $h=0,25,50,75,100,200$

Spatial Views

$\left|x l_{i}-M\left(\mathbf{u}_{i}, h\right)\right| \quad(h=50)$

$w_{i j}(i=76, h=50)$

Linked Views

Directed Geographic Weighting

Take $\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}} \exp (-\lambda \cos (\theta-\varphi))$

Directed GW statistics at clock points to reduce computation time.

Critique

Pros:

- Can compare at different scales (different values of h and θ)
- Moving window approach overcomes the abruptness of aggregation based on regional administrative hierarchy
- Ability to strum the set of scalograms

Cons:

- Computationally expensive and hard to search for trends at large number of scales
- Large number of views

Questions?

Thank You

