Cartography or Geospatial

Shama Rashid 23-Nov-2009

The Space-Time Cube Revisited from a Geo-Visualization Perspective

Menno Jan Kraak International Cartographic Conference, 2003

Previous Work

'60s Hägerstrand's space-time model:

- Space-Time Path(STP) limited by capability constraints, coupling and authority constraints
- Terms –stations, activity bundles, path footprint,
- Space-Time Prism Potential Path Space (PPS), PPA
- Space-Time cube 3 dimensions, geography along x-y axis, time along z axis

Figure 1 : Authors day at the city of Enschede

Automation and Multiple Views

An interactive visual environment with alternative graphics connected to the cube via multiple linked views

Figure 2: Napoleon's 1812 march into Russia

Axis Rotation and Measurement

Applications and Extended Functionalities

- Orienteering run, fitness run terrain and it's effect, reconstruct participant's trajectory
- Archaeology spread of civilization, interesting location

Using Additional Views

Figure: Napoleon's retreat

Critique

Pros:

- Strong tool, can associate axis with other variable
- Scaling along axis possible

Cons:

- Space and time have to be associated to two of the axis
- Need additional views even for basic space concepts like distance

Questions on usability aspects of the cube's viewing environment:

- 1. How many views can the user handle?
- 2. Can multiple STPs be shown?
- 3. How should the interface look like?

Unfolding the Earth: Myriahedral Projections

Jarke J. Van Wijk The Cartographic Journal, Feb 2008

Distortion in Map Projection

Terms:

- Myriahedron
- Parallels and meridians
- Graticulated mesh
- Tissot indicatrix
- Conformal projection
- Equal area projection
- terra incognita projection

Factors leading to different requirements

- 1) intended use of the map
- 2) the available technology
- 3) the area or aspect

Graticulated Mesh Conditions

- Triangular faces with small area as node and edges as edge of graph G
- foldout connected and can be flattened implies H_f is a spanning tree
- G_c is a spanning tree
- no fold-overs

Algorithm to generate myriahedral:

- 1. Generate a mesh
- 2. Assign weights to all edges
- 3. Calculate a maximal spanning tree H_f using Prim's algorithm $O(|E| + |V| \log |V|)$
- 4. Unfold the mesh
- 5. Render the unfolded mesh

Unfolding mesh

Projections on Platonic Solids

Defining Mesh

- a. Generate mesh lines along and perpendicular to contours of f with the algorithm of Jobard and Lefer;
- b. Calculate intersections of these sets of lines, and derive polygons;
- c. Tesselate polygons with more than four edges; and finally
- d. Use the standard approach to decide on folds and cuts.

Alternate Mesh Definition

Based on vector fields and tensor fields:

Pretty Maps!

Azimuthal projection, random weights added, 81 920 polygons

Critique

Pros:

- Methodologically interesting in Computer Science perspective
- Can use different weight factors according to presentation target

Cons:

- fold-over rare but not restricted
- Most resultant maps unusual and unusable
- High computational complexity
- Cuts are more disturbing than distortions to most users

Geographically Weighted Visualization: Interactive Graphics for Scale-Varying Exploratory Analysis

Jason Dykes and Chris Brunsdon IEEE Transactions on Visualization and Computer Graphics, 2007

Context

André-Michel Guerry on Moral statistics:

- Dataset related data for the departments of France in the early 19th century
- View uni-variate choropleth maps to identify trends and outliers

Friendly proved some of Guerry's hypothesis wrong using regression

Summary Statistics

Weighted Mean, M(u, h) =
$$\frac{\sum x_i w_i(u)}{\sum w_i(u)}$$

Gaussian decay function,
$$w_i(u) = \exp\left(-\frac{|u-u_i|^2}{2h}\right)$$

Redefining weight function as
$$W_i(u) = \frac{w_i(u)}{\sum w_i(u)}$$

Then
$$M(u, h) = \sum x_i W_i(u)$$

Discrete set of value, probability pairs $L = \{x_i, W_i\}$

Weight Maps and Their Effects

Boxplots, Choropleths and

Scalograms

Spatial Views

 $|x1_i - M(\mathbf{u}_i, h)| (h=50)$

Linked Views

Directed Geographic Weighting

Take $w_i = w_i \exp (-\lambda \cos(\theta_i - \varphi))$

Directed GW statistics at clock points to reduce computation time.

Critique

Pros:

- Can compare at different scales (different values of h and θ)
- Moving window approach overcomes the abruptness of aggregation based on regional administrative hierarchy
- Ability to strum the set of scalograms

Cons:

- Computationally expensive and hard to search for trends at large number of scales
- Large number of views

Questions?

Thank You