

- When giving information, you don't want to enumerate all of the exceptions, even if you could think of them all.
- In default reasoning, you specify general knowledge and modularly add exceptions. The general knowledge is used for cases you don't know are exceptional.
- Classical logic is monotonic: If g logically follows from A, it also follows from any superset of A.
- Default reasoning is nonmonotonic: When you add that something is exceptional, you can't conclude what you could before.

Defaults as Assumptions

Default reasoning can be modeled using

- \rightarrow *H* is normality assumptions
- \succ F states what follows from the assumptions
- An explanation of g gives an argument for g.

A reader of newsgroups may have a default: "Articles about AI are generally interesting".

 $H = \{int_ai(X)\},\$

where *int_ai*(*X*) means *X* is interesting if it is about AI. With facts:

> *interesting*(X) \leftarrow *about_ai*(X) \land *int_ai*(X). *about_ai*(*art_*23).

{*int_ai(art_23)*} is an explanation for *interesting(art_23)*.

Default Example, Continued

We can have exceptions to defaults:

false \leftarrow interesting(X) \land uninteresting(X).

Suppose article 53 is about AI but is uninteresting:

about_ai(art_53).

uninteresting(art_53).

We cannot explain *interesting*(*art*_53) even though everything we know about *art*_23 you also know about *art*_53.

Exceptions to Defaults

"Articles about formal logic are about AI." "Articles about formal logic are uninteresting." "Articles about machine learning are about AI."

> $about_ai(X) \leftarrow about_fl(X).$ $uninteresting(X) \leftarrow about_fl(X).$ $about_ai(X) \leftarrow about_ml(X).$ $about_fl(art_77).$ $about_ml(art_34).$

You can't explain *interesting*(*art*_77). You can explain *interesting*(*art*_34).

Formal logic is uninteresting by default

Contradictory Explanations

Suppose formal logic articles aren't interesting by default:

 $H = \{unint_fl(X), int_ai(X)\}$

The corresponding facts are:

 $interesting(X) \leftarrow about_ai(X) \land int_ai(X).$ $about_ai(X) \leftarrow about_fl(X).$ $uninteresting(X) \leftarrow about_fl(X) \land unint_fl(X).$ $about_fl(art_77).$

uninteresting(*art*_77) has explanation {*unint_fl*(*art*_77)}. *interesting*(*art*_77) has explanation {*int_ai*(*art*_77)}.

Overriding Assumptions

- Because art_77 is about formal logic, the argument "art_77 is interesting because it is about AI" shouldn't be applicable.
- This is an instance of preference for more specific defaults.
- Arguments that articles about formal logic are interesting because they are about AI can be defeated by adding:

$$false \leftarrow about_fl(X) \land int_ai(X).$$

This is known as a cancellation rule.

You can no longer explain interesting(art_77).

Diagram of the Default Example

Multiple Extension Problem

- What if incompatible goals can be explained and there are no cancellation rules applicable? What should we predict?
- For example: what if introductory questions are uninteresting, by default?
- This is the multiple extension problem.
 - Recall: an extension of $\langle F, H \rangle$ is the set of logical consequences of *F* and a maximal scenario of $\langle F, H \rangle$.

Competing Arguments

Skeptical Default Prediction

- \blacktriangleright We predict g if g is in all extensions of $\langle F, H \rangle$.
- Suppose g isn't in extension E. As far as we are concerned E could be the correct view of the world. So we shouldn't predict g.
- ➤ If g is in all extensions, then no matter which extension turns out to be true, we still have g true.
- Thus g is predicted even if an adversary gets to select assumptions, as long as the adversary is forced to select something. You do not predict g if the adversary can pick assumptions from which g can't be explained.

Minimal Models Semantics for Prediction

Recall: logical consequence is defined as truth in all models.

We can define default prediction as truth in all minimal models.

Suppose M_1 and M_2 are models of the facts.

 $M_1 <_H M_2$ if the hypotheses violated by M_1 are a strict subset of the hypotheses violated by M_2 . That is:

 ${h \in H' : h \text{ is false in } M_1} \subset {h \in H' : h \text{ is false in } M_2}$

where H' is the set of ground instances of elements of H.

Minimal Models and Minimal Entailment

- M is a minimal model of F with respect to H if M is a model of F and there is no model M_1 of F such that $M_1 <_H M$.
- ► g is minimally entailed from $\langle F, H \rangle$ if g is true in all minimal models of F with respect to H.

• Theorem: g is minimally entailed from $\langle F, H \rangle$ if and only if g is in all extensions of $\langle F, H \rangle$.