Markov chain

A Markov chain is a special sort of belief network:

$>$ Thus $P\left(S_{t+1} \mid S_{0}, \ldots, S_{t}\right)=P\left(S_{t+1} \mid S_{t}\right)$.
$>$ Often S_{t} represents the state at time t. Intuitively S_{t} conveys all of the information about the history that can affect the future states.
$>$ "The past is independent of the future given the present."

Stationary Markov chain

$>$ A stationary Markov chain is when for all $t>0, t^{\prime}>0$, $P\left(S_{t+1} \mid S_{t}\right)=P\left(S_{t^{\prime}+1} \mid S_{t^{\prime}}\right)$ we have.
$>$ We specify $P\left(S_{0}\right)$ and $P\left(S_{t+1} \mid S_{t}\right)$.
$>$ Simple model, easy to specify
\geqslant Often the natural model
$>$ The network can extend indefinitely

Hidden Markov Model

A A Hidden Markov Model (HMM) is a belief network:

$>P\left(S_{0}\right)$ specifies initial conditions
$>P\left(S_{t+1} \mid S_{t}\right)$ specifies the dynamics
$>P\left(O_{t} \mid S_{t}\right)$ specifies the sensor model

Example: localization

$>$ Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
$>$ This can be represented by the augmented HMM:

Example localization domain

- Circular corridor, with 16 locations:

$>$ Doors at positions: $2,4,7,11$.
> Noisy Sensors
$>$ Stochastic Dynamics
$>$ Robot starts at an unknown location and must determine where it is.

Example Sensor Model

$>P($ Observe Door \mid At Door $)=0.8$
> $P($ Observe Door \mid Not At Door $)=0.1$

Example Dynamics Model

> $P\left(l o c_{t+1}=L \mid\right.$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.1$
$>P\left(\right.$ loc $_{t+1}=L+1 \mid$ action $_{t}=$ goRight \wedge loc $\left._{t}=L\right)=0.8$
$>P\left(l o c_{t+1}=L+2 \mid\right.$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.074$
$P\left(\right.$ loc $_{t+1}=L^{\prime} \mid$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.002$ for any other location L^{\prime}.
\geqslant All location arithmetic is modulo 16.
$>$ The action goLeft works the same but to the left.

Combining sensor information

> Example: we can combine information from a light sensor and the door sensor Sensor Fusion

S_{t} robot location at time t
D_{t} door sensor value at time t
L_{t} light sensor value at time t

