Belief network inference

Three main approaches to determine posterior distributions in belief networks:
> Exploiting the structure of the network to eliminate (sum out) the non-observed, non-query variables one at a time.
> Search-based approaches that enumerate some of the possible worlds, and estimate posterior probabilities from the worlds generated.
> Stochastic simulation where random cases are generated according to the probability distributions.

Summing out a variable: intuition

Suppose B is Boolean ($B=$ true is b and $B=$ false is $\neg b$)

$P(C \mid A)$

$$
=P(C \wedge b \mid A)+P(C \wedge \neg b \mid A)
$$

$$
=P(C \mid b \wedge A) P(b \mid A)+P(C \mid \neg b \wedge A) P(\neg b \mid A)
$$

$$
=P(C \mid b) P(b \mid A)+P(C \mid \neg b) P(\neg b \mid A)
$$

$$
=\sum_{B} P(C \mid B) P(B \mid A)
$$

We can compute the probability of some of the variables by summing out the other variables.

Factors

A factor is a representation of a function from a tuple of random variables into a number.

We will write factor f on variables X_{1}, \ldots, X_{j} as $f\left(X_{1}, \ldots, X_{j}\right)$.

We can assign some or all of the variables of a factor:
$>f\left(X_{1}=v_{1}, X_{2}, \ldots, X_{j}\right)$, where $v_{1} \in \operatorname{dom}\left(X_{1}\right)$, is a factor on X_{2}, \ldots, X_{j}.
$>f\left(X_{1}=v_{1}, X_{2}=v_{2}, \ldots, X_{j}=v_{j}\right)$ is a number that is the value of f when each X_{i} has value v_{i}.

The former is also written as $f\left(X_{1}, X_{2}, \ldots, X_{j}\right)_{X_{1}=v_{1}}$, etc.

Example factors

	$\begin{array}{llll}X & Y & Z\end{array}$	val		$Y \mathrm{Z}$	val
	t t	0.1		t	0.1
	t t f	0.9	$r(X=t, Y, Z)$:	t f	0.9
	t f t	0.2		f	0.2
$r(X, Y, Z):$	t f f	0.8			0.8
	f t t	0.4		Y	val
	f t f	0.6	$r(X=t, Y, Z=f)$	$f):$ t	0.9
	f f t	0.3		f	0.8
	f f f	0.7	$r(X=t, Y=f$,	, $=$ =f)	$=0.8$

Multiplying factors

The product of factor $f_{1}(\bar{X}, \bar{Y})$ and $f_{2}(\bar{Y}, \bar{Z})$, where \bar{Y} are the variables in common, is the factor $\left(f_{1} \times f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})$ defined by:

$$
\left(f_{1} \times f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})=f_{1}(\bar{X}, \bar{Y}) f_{2}(\bar{Y}, \bar{Z})
$$

Multiplying factors example

$f_{1}:$| A | B | val |
| :--- | :--- | :--- |
| t | t | 0.1 |
| t | f | 0.9 |
| f | t | 0.2 |
| f | f | 0.8 |

$f_{2}:$| B | C | val |
| :---: | :---: | :---: |
| t | t | 0.3 |
| t | f | 0.7 |
| f | t | 0.6 |
| f | f | 0.4 |

$f_{1} \times f_{2}:$| A | B | C | val |
| :---: | :---: | :---: | ---: |
| t | t | t | 0.03 |
| t | t | f | 0.07 |
| t | f | t | 0.54 |
| t | f | f | 0.36 |
| f | t | t | 0.06 |
| f | t | f | 0.14 |
| f | f | t | 0.48 |
| f | f | f | 0.32 |

Summing out variables

We can sum out a variable, say X_{1} with domain $\left\{v_{1}, \ldots, v_{k}\right\}$, from factor $f\left(X_{1}, \ldots, X_{j}\right)$, resulting in a factor on X_{2}, \ldots, X_{j} defined by:

$$
\begin{aligned}
& \left(\sum_{X_{1}} f\right)\left(X_{2}, \ldots, X_{j}\right) \\
& \quad=f\left(X_{1}=v_{1}, \ldots, X_{j}\right)+\cdots+f\left(X_{1}=v_{k}, \ldots, X_{j}\right)
\end{aligned}
$$

Summing out a variable example

$f_{3}:$| A | B | C | val |
| :---: | :---: | :---: | :---: |
| t | t | t | 0.03 |
| t | t | f | 0.07 |
| t | f | t | 0.54 |
| t | f | f | 0.36 |
| f | t | t | 0.06 |
| f | t | f | 0.14 |
| f | f | t | 0.48 |
| f | f | f | 0.32 |

$\sum_{B} f_{3}:$| A | C | val |
| :---: | :---: | ---: |
| t | t | 0.57 |
| t | f | 0.43 |
| f | t | 0.54 |
| f | f | 0.46 |

Evidence

If we want to compute the posterior probability of Z given evidence $Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}$:

$$
\begin{aligned}
& P\left(Z \mid Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
& \quad=\frac{P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}{P\left(Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)} \\
& \quad=\frac{P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}{\sum_{Z} P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) .}
\end{aligned}
$$

So the computation reduces to the probability of $P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$.

We normalize at the end.

Probability of a conjunction

Suppose the variables of the belief network are X_{1}, \ldots, X_{n}.
To compute $P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$, we sum out the other variables, $Z_{1}, \ldots, Z_{k}=\left\{X_{1}, \ldots, X_{n}\right\}-\{Z\}-\left\{Y_{1}, \ldots, Y_{j}\right\}$.

We order the Z_{i} into an elimination ordering.

$$
\begin{aligned}
P & \left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
& =\sum_{Z_{k}} \cdots \sum_{Z_{1}} P\left(X_{1}, \ldots, X_{n}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}} \\
\quad & =\sum_{Z_{k}} \cdots \sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid \pi_{X_{i}}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}}
\end{aligned}
$$

Computing sums of products

Computation in belief networks reduces to computing the sums of products.
$>$ How can we compute $a b+a c$ efficiently?

Computing sums of products

Computation in belief networks reduces to computing the sums of products.

- How can we compute $a b+a c$ efficiently?
$>$ Distribute out the a giving $a(b+c)$

Computing sums of products

Computation in belief networks reduces to computing the sums of products.
$>$ How can we compute $a b+a c$ efficiently?
$>$ Distribute out the a giving $a(b+c)$
$>$ How can we compute $\sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid \pi_{X_{i}}\right)$ efficiently?

Computing sums of products

Computation in belief networks reduces to computing the sums of products.
$>$ How can we compute $a b+a c$ efficiently?
$>$ Distribute out the a giving $a(b+c)$
$>$ How can we compute $\sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid \pi_{X_{i}}\right)$ efficiently?
$>$ Distribute out those factors that don't involve Z_{1}.

Variable elimination algorithm

To compute $P\left(Z \mid Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}\right)$:
$>$ Construct a factor for each conditional probability.
$>$ Set the observed variables to their observed values.
$>$ Sum out each of the other variables (the $\left\{Z_{1}, \ldots, Z_{k}\right\}$) according to some elimination ordering.
> Multiply the remaining factors. Normalize by dividing the resulting factor $f(Z)$ by $\sum_{Z} f(Z)$.

Summing out a variable

To sum out a variable Z_{j} from a product f_{1}, \ldots, f_{k} of factors:
$>$ Partition the factors into
\rangle those that don't contain Z_{j}, say f_{1}, \ldots, f_{i},
$>$ those that contain Z_{j}, say f_{i+1}, \ldots, f_{k}
We know:

$$
\sum_{Z_{j}} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times\left(\sum_{Z_{j}} f_{i+1} \times \cdots \times f_{k}\right)
$$

Explicitly construct a representation of the rightmost factor. Replace the factors f_{i+1}, \ldots, f_{k} by the new factor

Variable elimination example

