
Computational Intelligence Chapter 4, Lecture 3, Page 1

Heuristic Search
➤ Idea: don’t ignore the goal when selecting paths.

➤ Often there is extra knowledge that can be used to guide
the search:heuristics.

➤ h(n) is an estimate of the cost of the shortest path from
noden to a goal node.

➤ h(n) uses only readily obtainable information (that is
easy to compute) about a node.

➤ h can be extended to paths:h(〈n0, . . . , nk〉) = h(nk).

➤ h(n) is an underestimate if there is no path fromn to a
goal that has path length less thanh(n).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 2

Example Heuristic Functions

➤ If the nodes are points on a Euclidean plane and the cost

is the distance, we can use the straight-line distance from

n to the closest goal as the value ofh(n).

➤ If the graph is one of queries for a derivation from a KB,

one heuristic function is the number of atoms in the

query.

➤ If the nodes are locations and cost is time, we can use the

distance to a goal divided by the maximum speed.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 3

Best-first Search

➤ Idea: select the path whose end is closest to a goal

according to the heurstic function.

➤ Best-first search selects a path on the frontier with

minimal h-value.

➤ It treats the frontier as a priority queue ordered byh.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 4

Illustrative Graph — Best-first Search

g

s

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 5

Complexity of Best-first Search

➤ It uses space exponential in path length.

➤ It isn’t guaranteed to find a solution, even of one exists.

➤ It doesn’t always find the shortest path.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 6

Heuristic Depth-first Search

➤ It’s a way to use heuristic knowledge in depth-first

search.

➤ Idea: order the neighbors of a node (byh) before adding

them to the front of the frontier.

➤ It locally selects which subtree to develop, but still does

depth-first search. It explores all paths from the node at

the head of the frontier before exploring paths from the

next node.

➤ Space is linear in path length. It isn’t guaranteed to find a

solution. It can get led up the garden path.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 7

A∗ Search

➤ A∗ search uses both path cost and heuristic values

➤ cost(p) is the cost of the pathp.

➤ h(p) estimates of the cost from the end ofp to a goal.

➤ Let f (p) = cost(p) + h(p). f (p) estimates of the the total

path cost of going from a start node to a goal viap.

start
pathp−→ n

︸ ︷︷ ︸

cost(p)

estimate−→ goal
︸ ︷︷ ︸

h(n)
︸ ︷︷ ︸

f (p)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 8

A∗ Search Algorithm

➤ A∗ is a mix of lowest-cost-first and best-first search.

➤ It treats the frontier as a priority queue ordered byf (n).

➤ It always selects the node on the frontier with the lowest

estimated distance from the start to a goal node

constrained to go via that node.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 9

Admissibility of A∗

If there is a solution,A∗ always finds an optimal solution

—the first path to a goal selected— if

➤ the branching factor is finite

➤ arc costs are bounded above zero (there is someε > 0

such that all of the arc costs are greater thanε), and

➤ h(n) is an underestimate of the length of the shortest path

from n to a goal node.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 10

Why is A∗ admissible?

➤ If a pathp to a goal is selected from a frontier, can there

be a shorter path to a goal?

➤ Suppose pathp′ is on the frontier. Becausep was chosen

beforep′, andh(p) = 0:

cost(p) ≤ cost(p′) + h(p′).

➤ Becauseh is an underestimate

cost(p′) + h(p′) ≤ cost(p′′)

for any pathp′′ to a goal that extendsp′

➤ Socost(p) ≤ cost(p′′) for any other pathp′′ to a goal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 11

Why is A∗ admissible?

➤ There is always an element of an optimal solution path

on the frontier before a goal has been selected. This is

because, in the abstract search algorithm, there is the

initial part of every path to a goal.

➤ A∗ halts, as the minimumg-value on the frontier keeps

increasing, and will eventually exceed any finite number.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

