Heuristic Searc

ldea: don’t ignore the goal when selecting paths.

Often there is extra knowledge that can be used to g
the search heuristics.

n(n) Is an estimate of the cost of the shortest path fr
noden to a goal node.

h(n) uses only readily obtainable information (that is
easy to compute) about a node.

h can be extended to pathis((ng, ..., Nk)) = h(nk).

h(n) is an underestimate if there is no path frano a
goal that has path length less tham).

http://www.cs.ubc.ca/spider/poole/ci.html

Example Heuristic Functio

L1 If the nodes are points on a Euclidean plane and the
IS the distance, we can use the straight-line distance
n to the closest goal as the valuelgh).

L] If the graph is one of queries for a derivation from a k
one heuristic function is the number of atoms in the

query.

] If the nodes are locations and cost is time, we can us
distance to a goal divided by the maximum speed.

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

]

Best-first Searc

ldea: select the path whose end is closest to a goal
according to the heurstic function.

Best-first search selects a path on the frontier with
minimal h-value.

It treats the frontier as a priority queue orderedby

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

lllustrative Graph — Best-first Sear

jl:ID

http://www.cs.ubc.ca/spider/poole/ci.html

Complexity of Best-first Searc

L] It uses space exponential in path length.
L1 Itisn’t guaranteed to find a solution, even of one exis

L] It doesn’t always find the shortest path.

jDD

http://www.cs.ubc.ca/spider/poole/ci.html

Heuristic Depth-first Searc

It's a way to use heuristic knowledge in depth-first
search.

Idea: order the neighbors of a node (hybefore addin
them to the front of the frontier.

It locally selects which subtree to develop, but still do
depth-first search. It explores all paths from the node
the head of the frontier before exploring paths from tt
next node.

Space is linear in path length. It isn’t guaranteed to fi
solution. It can get led up the garden path.

Ll
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

_| A* search uses both path cost and heuristic values

cost(p) is the cost of the pathp.
h(p) estimates of the cost from the endpoffo a goal.

Letf (p) = cost(p) + h(p). f (p) estimates of the the tot
path cost of going from a start node to a goalpia

pathp estimate
saat — n — goal

cosvt (p) h{n)

N /

f (D)

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

A* Search Algorith

A* I1s a mix of lowest-cost-first and best-first search.
It treats the frontier as a priority queue ordered hy).

It always selects the node on the frontier with the low
estimated distance from the start to a goal node
constrained to go via that node.

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Admissiblility of A*

If there is a solutionA* always finds an optimal solution
—the first path to a goal selected— if

L] the branching factor is finite

1 arc costs are bounded above zero (there is somé
such that all of the arc costs are greater tharand

L1 h(n) is an underestimate of the length of the shortest
from n to a goal node.

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Why is A* admissible

If a pathp to a goal is selected from a frontier, can the
be a shorter path to a goal?

Suppose patp’ is on the frontier. Becaugewas chosel
beforep’, andh(p) = 0:

cost(p) < cost(p’) + h(p’).
Becausd Is an underestimate

cost(p) + h(p’) < cost(p”)
for any pathp” to a goal that extends

Socost(p) < cost(p”) for any other patlp” to a goal. :

4

http://www.cs.ubc.ca/spider/poole/ci.html

Why is A* admissible

L] There is always an element of an optimal solution pa
on the frontier before a goal has been selected. This
because, in the abstract search algorithm, there is th
Initial part of every path to a goal.

L1 A* halts, as the minimurg-value on the frontier keeps
Increasing, and will eventually exceed any finite num

]

http://www.cs.ubc.ca/spider/poole/ci.html

